Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Synthetic Routes to Oxazolines

Author(s): Ensar Mulahmetovic and Gráinne C. Hargaden*

Volume 16, Issue 6, 2019

Page: [507 - 526] Pages: 20

DOI: 10.2174/1570193X15666180802105505

Price: $65

Abstract

In this mini-review, the main synthetic routes used in the preparation of oxazolines is presented. The review is systematically carried out and the syntheses are presented in terms of precursors utilised (nitriles, aldehydes and carboxylic acids). Additionally, the reported synthesis of all chiral and achiral oxazolines involve either the use of amino alcohols as essential building blocks or some form of intramolecular cyclisation reactions. A comparison of the effectiveness of various reaction initiators such as Lewis acids, bases, oxidants and metals as well as their respective reaction conditions is also described. Lewis acid catalysts such as zinc chloride, zinc oxide and indium (III) chloride as well as triflic acid and ruthenium complexes are presented as effective catalysts in the formation of oxazolines from nitrile precursors. Oxidising agents such as N-bromosuccinimide, hypervalent iodine reagents and reducing agents such as butyllithium have been used in the formation oxazolines from aldehydes. While carboxylic acids have been used effectively as good precursors to oxazolines when using reagents such as cyanuric chloride as well as transition metal containing catalysts such as copper, ruthenium and titanium. In some cases, catalyst free reaction conditions have also been reported offering substituted oxazolines through microwave and ultrasonic irradiation as well as under standard reflux conditions.

Keywords: Amino alcohol, catalysis, chirality, oxazoline, asymmetric reactions, microwave irradiation, synthesis.

Graphical Abstract

[1]
Hargaden, G.C.; Guiry, P.J. Recent developments in the application of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev., 2009, 109, 2505-2550.
[2]
Munoz, M.P.; Adrio, J.; Carretero, J.C.; Echavarren, A.M. Ligand effects in gold and platinum-catalyzed cyclization of enynes: Chiral gold complexes for enantioselective alkoxycyclization. Organometallics, 2005, 24(6), 1293-1300.
[3]
Liu, H.L.; Xu, J.; Du, D.M. Asymmetric friedel-crafts alkylation of methoxyfuran with nitroalkenes catalyzed by diphenylamine-tethered Bis(oxazoline)-Zn(II) complexes. Org. Lett., 2007, 9(23), 4725-4728.
[4]
Nanchen, S.; Pfaltz, A. Synthesis and application of chiral N-heterocyclic carbene-oxazoline ligands: Iridium-catalyzed enantioselective hydrogenation. Chem. Eur. J., 2006, 12, 4550-4558.
[5]
Kushwaha, N.; Kushwaha, S.K.S.; Rai, A.K. Biological activities of thiadiazole derivatives: A review. Int. J. Chem. Technol. Res, 2012, 4(2), 517-531.
[6]
Rudrapal, M.; De, B. Chemistry and biological importance of heterocyclic Schiff’s bases. Int. Res. J. Pure Appl. Chem., 2013, 3, 232-249.
[7]
Pfeiffer, B.; Hauenstein, K.; Merz, P.; Gertsch, J.; Altmann, K.H. Synthesis and SAR of C12-C13-oxazoline derivatives of epothilone A. Bioorg. Med. Chem. Lett., 2009, 19(14), 3760-37603.
[8]
Faizi, S.; Farooqi, F.; Zikr-ur-Rehman, S.; Naz, A.; Noor, F.; Ansari, F.; Ahmad, A.; Khan, S.A. Shahidine, a novel and highly labile oxazoline from Aegle marmelos: The parent compound of aegeline and related amides. Tetrahedron, 2008, 65(5), 998-1004.
[9]
McIntosh, J.A.; Donia, M.S.; Schmidt, E.W. Insights into heterocyclization from two highly similar enzymes. J. Am. Chem. Soc., 2010, 132(12), 4089-4091.
[10]
Ondre, D.; Wolfling, J.; Toth, I.; Szecsi, M.; Julesz, J.; Schneider, G. Stereoselective synthesis of some steroidal oxazolines, as novel potential inhibitors of 17 alpha-hydroxylase-C-17, C-20-lyase. Steroids, 2009, 74, 1025-1032.
[11]
Martins, C.; Correia, V.G.; Ricardo, A.A.; Cunha, A.; Guilhermina, M.; Moutinho, M. Antimicrobial activity of new green-functionalized oxazoline-based oligomers against clinical isolates. Springerplus, 2015, 4, 382-386.
[12]
Helmut, W.; Wolfgang, S. Simple synthesis of 2-substituted 2-oxazolines and 5,6-dihydro-4h-1,3-oxazines. Angew. Chem. Int. Ed., 1972, 11(4), 287-288.
[13]
Hargaden, G.C.; Muller-Bunz, H.; Guiry, P.J. New proline-oxazoline ligands and their application in the asymmetric Nozaki-Hiyama-Kishi reaction. Eur. J. Org. Chem., 2007, 4235-4243.
[14]
Luo, M.; Zhang, J.C.; Yin, H. Efficient one-pot synthesis of 2-oxazolines from benzoylacetonitrile and I-aminoalcohols mediated by ZnCl2. J. Chem. Sci., 2015, 127(1), 163-166.
[15]
Sarvari, M.H.; Khanivar, A.; Moeini, F. Magnetically recoverable nano Pd/Fe3O4/ZnO catalyst: Preparation, characterization, and application for the synthesis of 2-oxazolines and benzoxazoles. J. Mater. Sci., 2015, 50, 3065-3074.
[16]
Satyanarayana, B.; Prasad, A.S. Synthesis of aryl 2-oxazolines from aromatic nitriles and aminoalcohols using magnetically recoverable Pd/Fe3O4. Der. Pharma Chem., 2012, 4(1), 93-99.
[17]
Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Kargar, H. InCl3 as an efficient catalyst for synthesis of oxazolines under thermal, ultrasonic and microwave irradiations. J. Iran. Chem. Soc, 2009, 6(2), 251-258.
[18]
Zhou, H.; Zeng, X.; Ding, L.; Xie, Y.; Zhong, G. Triflic acid catalyzed formal [3+2] cycloaddition of donor-acceptor oxiranes and nitriles: A facile access to 3-oxazolines. Org. Lett., 2015, 17(10), 2385-2387.
[19]
Viswanathamurthi, P.; Kesavan, D.; Butcher, R.J.; Anitha, P. Ruthenium(II) 9,10-phenanthrenequinone thiosemicarbazone complexes: Synthesis, characterization, and catalytic activity towards the reduction as well as condensation of nitriles. J. Coord. Chem., 2015, 68(2), 321-334.
[20]
Hassani, R.; Requet, A.; Marque, S.; Gaucher, A.; Prim, D.; Kacem, Y.; Hassine, B.B. Efficacious and rapid metal- and solvent-free synthesis of enantiopure oxazolines. Tetrahedron Asymmetry, 2014, 25, 1275-1279.
[21]
Garg, P.; Chaudhary, S.; Milton, M.D. Synthesis of 2-aryl/heteroaryloxazolines from nitriles under metal- and catalyst-free conditions and evaluation of their antioxidant activities. J. Org. Chem., 2014, 79, 8668-8677.
[22]
Schwekendiek, K.; Glorius, F. Efficient oxidative synthesis of 2-oxazolines. Synthesis, 2006, 18, 2996-3002.
[23]
Karade, N.N.; Tiwari, G.B.; Gampawar, S.V. Efficient oxidative conversion of aldehydes to 2-substituted oxazolines and oxazines using (diacetoxyiodo) benzene. Synlett, 2007, 12, 1921-1924.
[24]
Ishihara, M.; Togo, H. Direct oxidative conversion of aldehydes and alcohols to 2-imidazolines and 2-oxazolines using molecular iodine. Tetrahedron, 2007, 6, 1474-1480.
[25]
Xiao, N.; Wang, S.H.; Zhang, A.Y.; Li, H.Y.; Wang, P.; Li, W.; Chen, B.H.; Chen, G.F.; Li, N. An efficient one-pot synthesis of 2-oxazolines with molecular iodineunde ultrasound irradiation. Res. Chem. Intermed., 2015, 41, 9731-9742.
[26]
Takahashi, S.; Togo, H. An efficient oxidative conversion of aldehydes into 2-substituted 2-oxazolines using 1,3-diiodod-5,5-dimethylhydantoin. Synthesis, 2009, 14, 2329-2332.
[27]
Maheswari, C.U.; Kumar, G.S.; Venkateshwar, M. Transition metal and base free synthesis of 2-aryl-2-oxazolines from aldehydes and β-amino alcohols catalysed by potassium iodide. RSC Adv., 2014, 4(75), 39897-39900.
[28]
Navarro, V.J.; Delso, I.; Tejero, T.; Merino, P. Azomethine ylides from nitrones: Using catalytic nBuLi for the totally stereoselective synthesis of trans-2-alkyl-3-oxazolines. Chem. Eur. J., 2016, 22, 11527-11532.
[29]
Kangani, C.O.; Day, B.W. A novel and direct synthesis of 1,3,4-oxadiazoles or oxazolines from carboxylic acids using cyanuric chloride/indium. Tetrahedron Lett., 2009, 50, 5332-5335.
[30]
Bandgar, B.P.; Pandit, S.S. Direct synthesis of 2-oxazolines from carboxylic acids using 2-chloro-4,6-dimethoxy-1,3,5-triazine under mild conditions. Tetrahedron Lett., 2003, 44(11), 2331-2333.
[31]
Miller, J.J.; Rajaram, S.; Pfaffenroth, C.; Sigman, M.S. Synthesis of amine functionalized oxazolines with applications in asymmetric catalysis. Tetrahedron, 2009, 65(11), 3110-3119.
[32]
Vorbrüggen, H.; Krolikiewicz, K. A simple synthesis of Δ-oxazolines, Δ-thiazolines and Δ-imidazolines. Tetrahedron Lett., 1981, 22(45), 4471-4474.
[33]
Sharma, R.; Vadivel, S.K.; Duclose, R.I.; Makriyannis, A. Open vessel mode microwave-assisted synthesis of 2-oxazolines from carboxylic acids. Tetrahedron Lett., 2009, 50(42), 5780-5782.
[34]
Jiang, H.; Sun, L.; Yuan, S.; Lu, W.; Wan, W.; Zhu, S.; Hao, J. A facile one-pot synthesis of 2-fluoroalkyl 1,3-imidazolines and 1,3-oxazolines through imidoyl halide intermediates. Tetrahedron, 2012, 68(13), 2858-2863.
[35]
Jiang, H.; Lu, W.; Cai, Y.; Wan, W.; Wu, S.; Zhu, S.; Hao, J. Study on the tandem synthesis of optically active 2-substituted 4 (or 5)-phenyl-1,3-oxazolines. Tetrahedron, 2013, 69(9), 2150-2156.
[36]
Avalos-Alanis, F.G.; Hernanez-Fernandez, E.; Hernandez-Romero, R.; Cortina, S.L.; Ordonez, M.; Garcia-Barradas, O.; Lagunas-Rivera, S. Practical and efficient synthesis of chiral 2,4-disubstituted oxazolines from β-phosphonoamides. Tetrahedron Asymmetry, 2014, 25(2), 156-162.
[37]
Wang, C.; Zhang, J.; Wang, S.; Fan, J.; Wang, Z. Facile synthesis of polysubstituted oxazoles via a copper-catalyzed tandem oxidative cyclization. Org. Lett., 2010, 12(10), 2338-2341.
[38]
Zhong, C.L.; Tang, B.Y.; Chen, P.Y.Y.; He, L. Synthesis of 2,5-disubstituted oxazoles and oxazolines catalyzed by Ruthenium(II) porphyrin and simple copper salts. J. Org. Chem., 2012, 77(9), 4271-4277.
[39]
Arkhipova, M.; Eichel, S.; Maas, G. Hexaalkyguanidinium salts as ionic liquids-applications in titanium and aluminium alcoholate assisted synthesis. RSC Advances, 2014, 4(99), 56506-56517.
[40]
Hu, F.; Huo, Y.M.; Chang, H.H.; Li, X.; Wei, W.L.; Gao, W.C.I. 2-catalyzed C-O bond formation and dehydrogenation: Facile synthesis of oxazolines and oxazoles controlled by bases. Org. Lett., 2015, 17, 3914-3917.
[41]
Alhalib, A.; Kamouka, S.; Moran, W.J. Iodoarene-catalyzed cyclizations of unsaturated amides. Org. Lett., 2015, 17(6), 1453-1456.
[42]
Liu, G.Q.; Yang, C.H.; Li, Y.M. Modular preparation of 5-halomethyl-2-oxazolines via PhI(OAc)2-promoted intramolecular halooxygenation of N-allylcarboxamides. J. Org. Chem., 2015, 80(22), 11339-11350.
[43]
Li, H.; Qin, J.; Yang, Z.; Guan, X.; Zhang, L.; Liao, P.; Li, X. DAST-promoted Beckmann rearrangement/intramolecular cyclization of acyclic ketoximes: Access to 2-oxazolines, benzimidazoles and benzoxazoles. Chem. Commun., 2015, 51(41), 8637-8639.
[44]
Wong, V.H.L.; White, A.J.P.; Hor, T.S.; Hii, K.K. Silver-catalyzed cyclization of propargylic amides to oxazolines. Adv. Synth. Catal., 2015, 357(18), 3943-3948.
[45]
Li, B.; Wang, S.Q.; Liu, B.; Shi, B.F. Synthesis of oxazolines from amides via palladium-catalyzed functionalization of unactivated C(sp3)-H bond. Org. Lett., 2015, 17(5), 1200-1203.
[46]
Xi, T.; Mei, Y.; Lu, Z. Palladium-catalyzed C-2 C-H heteroarylation of chiral oxazolines: Diverse synthesis of chiral oxazoline ligands. Org. Lett., 2015, 17(24), 5939-5941.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy