[1]
G. Nandi, and A. Das, "A Survey on using data mining techniques feo online social network", IJCSI, vol. 10, pp. 162-167, 2013.
[2]
L.H. Patil, and M. Atique, "A novel feature selection based on information gain using wordnet", In Science and Information Conference,. London, UK, 2013, pp. 625-629
[3]
S. Poria, E. Cambria, A. Hussain, and G. Huang, "Towards an intelligent framework for multimodal affective data analysis", Neural Netw., vol. 63, pp. 104-116, 2015.
[4]
B. Liu, Sentiment Analysis and Opinion mining.. synthesis lectures
on Human Language Technologies: Morgan & Claypool publishers,
2012.
[5]
B. Agarwal, S. Poria, N. Mittal, A. Gelbukh, and A. Hussain, "Concept - level sentiment analysis using dependency-based semantic parsing: A novel approach", Cognit. Comput., vol. 7, pp. 487-499, 2015.
[6]
B. Pang, L. Lee, and S. Vaithayanathan, "“Thumbs up? Sentiment
Classification using machine learning techniques”, In", EMNLP '02
Proceedings Of The ACL-02 Conference On Empirical Methods in
Natural Language Processing,. Stroudsburg, PA, USA, 2002, pp.
79-86,
[7]
Z. Hai, K. Chang, and J. Kim, "“Implicit feature identification via
co-occurrence association rule mining”, In", Computational Linguistics
and Intelligent Text Processing,. Tokyo, Japan, 2011, pp. 393-
404.
[8]
"N. Godbole, S. Skiena, and M. srinivasaiah,", “Large-scale sentiment
analysis.”. U.S. Patent 7996210 B2, 2011.
[9]
M. Shardlow, “An analysis of feature selection techniques”,. The
University of Manchester, Manchester, UK, 2016.
[10]
"I. guyon, and A. Ellisseeff, “An introduction to variable and feature selection", J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
[11]
L. Zhang, R. Ghosh, and M.F. Dekhil, “Performing sentiment
analysis”, U.S. Patent 9,009,024 B2, 2015.
[12]
"Pearson product-moment correlation coefficient: Available from:", http://en.wikipedia.org/wiki/Pearson_product_moment_correlation_coefficient
[13]
Y. Yang, and J.O. Pedersen, "“A comparative study on feature
selection in text categorization”, In", Proceedings of the Fourteenth
International Conference on Machine Learning,. Nashville, Tennessee,
USA, 1997, pp. 412–420.
[14]
Y. Saeys, T. Abeel, and Y.V. de Peer, "“Robust feature selection
using ensemble feature selection techniques”, In:", Machine Learning
and Knowledge Discovery in Databases,. Lecture Notes in
Computer Science, W. Daelemans, B. Goethals, and K. Morik, Ed.
Berlin, Heidelberg: Springer, vol. 5212, 2008, pp. 313-325.
[15]
I. Perikos, and I. Hatzilygeroudis, "Recognizing emotions in text using ensemble of classifiers", Eng. Appl. Artif. Intell., vol. 51, pp. 191-201, 2016.
[16]
N.F. Da Silva, E.R. Hruschka, and E.R. Hruschka Jr, "Tweet sentiment analysis with classifier ensembles", Decis. Support Syst., vol. 66, pp. 170-179, 2014.
[17]
Q. Gu, Z. Li, and J. Han, "“Generalized fisher score for Feature
selection”, In", UAI'11 Proceedings of the Twenty-Seventh Conference
on Uncertainty in Artificial Intelligence,. Barcelona, Spain
2011, pp. 266-273.
[18]
K. Arunasakthi, "L. KamatchiPriya, and A. Askerunisa, “Fisher score dimensionality reduction for svm classification", Int. J. Innov. Res. Sci. Eng., vol. 3, pp. 1900-1904, 2014.
[19]
Fisher Score Feature Selection Implementation: Available from:, https://stats.stackexchange.com/questions/277123/fisher-score-feature-selection-implementation
[20]
S. Lei, "“A feature selection method based on Information Gain and
Genetic Algorithm”, In", International Conference on Computer Science
and Electronics Engineering,. Hangzhou, China, 2012, pp.
355-358.
[21]
D. Koller, and M. Sahami, "“Toward optimal feature selection”, In", Proceedings of the Thirteenth International Conference on International
Conference on Machine Learning,. Bari, Italy, 1996, pp. 284-
292.
[22]
"Dimensionality reduction: Available from:", http://people.cs. pitt.edu/~iyad/DR.pdf
[23]
M.S. Sainin, and R. Alfred, "“A genetic based wrapper feature
selection approach using nearest neighbour distance matrix”, In", 3rd
Conference on Data Mining and Optimization (DMO),. Putrajaya,
Malaysia, 2011, pp. 237-242.
[24]
R. Kohavi, and G.H. John, "Wrappers for feature subset selection", Artif. Intell., vol. 97, pp. 273-324, 1997.
[25]
P.D. Turney, "“Thumbs up or thumbs down? Semantic orientation
applied to unsupervised classification of reviews”, In", Proceedings
of the 40th Annual Meeting of the Association for Computational
Linguistics,. Philadelphia, PN, USA, 2002, pp. 417-424.
[26]
A. Pak, and P. Paroubek, "“Text representation using dependency
tree sub-graphs for sentiment analysis”, In", DASFAA'11 Proceedings
of the 16th International Conference on Database Systems for
Advanced applications,. Hong Kong, China, 2011, pp. 323-332.
[27]
G. Sidorov, "Non-continuous syntactic sn-grams", Polibits, vol. 48, pp. 67-75, 2013.
[28]
S. Das, “Automatic document sentiment analysis”,. U.S. Patent
2017/0060996 A1, 2017.
[29]
I. Kononenko, "“Estimating attributes: Analysis and extensions of
RELIEF”, In", European Conference on Machine Learning,. Catania,
Italy, 1994, pp. 171-182.
[30]
E. Cambria, A. Hussain, C. Havasi, and C. Eckl, "“Common sense
computing from society of mind to digital intuition and beyond”, In", European Workshop on Biometrics and Identity Management,. Madrid,
Spain, 2009, pp. 252-259.
[31]
G.A. Miller, "WordNet: A lexical database for english", Commun. ACM, vol. 38, pp. 39-41, 1995.
[32]
C. Fellbaum, WordNet: An electronic lexical database.. Cambridge,
MA: MIT Press, 1998.
[33]
T. Mikolov, K. Chen, G. Corrado, and J. Dean, "“Efficient estimation
of word representations in vector space”,", CORR,. vol.
abs/1301.3781, pp. 1-12, 2013.
[34]
B. Jiang, E. Xun, and J. Qi, "“A domain independent approach for
extracting terms from research papers”, In", Databases Theory and
Applications.. Lecture Notes in Computer Science, M. Sharaf, M.
Cheema, and J. Qi, Ed. Cham: Springer, vol. 9093, 2015, pp. 155-
166
[35]
M.F. Delgado, E. Cernadas, and S. Barro, "Do we need hundreds of classifiers to solve real world classification problems", JMLR, vol. 15, pp. 3133-3181, 2014.
[36]
J.A. Rehling, and T.G. Dignan, “Detailed sentiment analysis”,. U.S. Patent 8,463,595 B1, 2013.
[37]
L. Brieman, "Random forests", Mach. Learn., vol. 45, pp. 5-32, 2001.
[38]
G. Biau, "Analysis of a random forest model", JMLR, vol. 13, pp. 1063-1095, 2012.
[39]
E. Goel, and E. Abhilasha, "Random forest: A review", IJARCSSE, vol. 7, pp. 251-257, 2017.
[40]
D. Zhang, H. Xu, Z. Su, and Y. Xu, "Chinese comments sentiment classification based on word2vec and SVMperf", ESA, vol. 2, pp. 1857-1863, 2015.
[41]
G. Patil, V. Galande, V. Kekan, and K. Dange, "Sentiment analysis using support vectormachine", IJIRCCE, vol. 2, pp. 2607-2612, 2014.
[42]
B. Savita, and D. Gore, "Sentiment Analysis on Twitter Data Using Support Vector Machine", IJCS, vol. 4, pp. 365-370, 2016.
[43]
P. Kalaivani, and K.L. Shunmuganathan, "Sentiment classification of movie reviews by supervised machine learning approaches", IJCSE, vol. 4, pp. 285-292, 2013.
[44]
A. Alsaffar, and N. Omar, "Integrating a lexicon based approach and k nearest neighbour for malay sentiment analysis", JCS, vol. 11, pp. 639-644, 2015.
[45]
J. Kazmierska, and J. Malicki, "Application of the naïve Bayesian classifier to optimize treatment decisions", Radiother. Oncol., vol. 86, pp. 211-216, 2008.
[46]
L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari, "Sentiment analysis of review datasets using Naïve Bayes’ and K-NN classifier", IJIEEB, vol. 4, pp. 54-62, 2016.
[47]
Preety and S. Dahiya, "Sentiment analysis using SVM and Naïve Bayes algorithm", IJCSMC, vol. 4, pp. 212-219, 2015.
[48]
H.Y. Lee, and H. Renganathan, "“Chinese sentiment analysis using
maximum entropy”, In", Proceedings of the Workshop on Sentiment
Analysis where AI meets Psychology,. Chiang Mai, Thailand, 2011,
pp. 89-93.
[49]
N. Mehra, S. Khandelwal, and P. Patel, “Sentiment Identification
using maximum entropy analysis of movie reviews”,. Stanford University,
USA, 2002.
[50]
W. Medhat, A. Hassan, and H. Korashy, "Sentiment analysis algorithms and applications: A survey", ASEJ, vol. 5, pp. 1093-1113, 2014.
[51]
K. Ravi, and V. Ravi, "A survey on opinion mining and sentiment analysis: tasks, approaches and applications", KBS, vol. 89, pp. 14-46, 2015.