[1]
Ojha, R.; Singh, J.; Ojha, A.; Singh, H.; Sharma, S.; Nepali, K. An updated patent review: Xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015). Expert Opin. Ther. Pat., 2017, 27, 311-345.
[2]
Hahn, K.; Kanbay, M.; Lanaspa, M.A.; Johnson, R.J.; Ahsan Ejaz, A. Serum uric acid and acute kidney injury: A mini review. J. Adv. Res., 2017, 8, 529-536.
[3]
Dalbeth, N.; Merriman, T.R.; Stamp, L.K. Gout. Lancet, 2016, 388, 2039-2052.
[4]
Ye, P.; Yang, S.; Zhang, W.; Lv, Q.; Cheng, Q.; Mei, M.; Luo, T.; Liu, L.; Chen, S.; Li, Q. Efficacy and tolerability of febuxostat in hyperuricemic patients with or without gout: A systematic review and meta-analysis. Clin. Ther., 2013, 35, 180-189.
[5]
Grewal, H.K.; Martinez, J.R.; Espinoza, L.R. Febuxostat: Drug review and update. Expert Opin. Drug Metab. Toxicol., 2014, 10, 747-758.
[6]
Frampton, J.E. Febuxostat: A review of its use in the treatment of hyperuricaemia in patients with gout. Drugs, 2015, 75, 427-738.
[7]
Kishimoto, K.; Kobayashi, R.; Hori, D.; Sano, H.; Suzuki, D.; Kobayashi, K. Febuxostat as a prophylaxis for tumor lysis syndrome in children with hematological malignancies. Anticancer Res., 2017, 37, 5845-5849.
[8]
Wu, Y.L.; Mao, Z.S.; Liu, Y.P.; Wang, X.; Di, X. Simultaneous determination of febuxostat and its three active metabolites in human plasma by liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study in Chinese healthy volunteers. J. Pharm. Biomed. Anal., 2015, 114, 216-221.
[9]
Choudhury, H.; Gorain, B.; Das, A.; Ghosh, B.; Pal, T. Development and validation of a sensitive HPLC-MS/MS-ESI method for determination of febuxostat: Application to pharmacokinetic study. Curr. Anal. Chem., 2014, 10, 528-536.
[10]
Tandel, D.; Shah, P.; Patel, K.; Thakkar, V.; Patel, K.; Gandhi, T. Salting-out assisted liquid-liquid extraction for quantification of febuxostat in plasma using RP-HPLC and its pharmacokinetic application. J. Chromatogr. Sci., 2016, 54, 1827-1833.
[11]
Mohamed, A-M.I.; Omar, M.A.; Derayea, S.M.; Hammad, M.A.; Mohamed, A.A. Innovative thin-layer chromatographic method combined with fluorescence detection for specific determination of febuxostat: Application in biological fluids. Talanta, 2018, 176, 318-328.
[12]
Sivasankaran, U.; Thomas, A.; Jose, A.R.; Girish Kumar, K. Poly(bromophenol blue)-gold nanoparticle composite: An efficient electrochemical sensing platform for uric acid. J. Electrochem. Soc., 2017, 164, B292-B297.
[13]
Movlaee, K.; Norouzi, P.; Beitollahi, H.; Rezapour, M.; Larijani, B. Highly selective differential pulse voltammetric determination of uric acid using modified glassy carbon electrode. Int. J. Electrochem. Sci., 2017, 12, 3241-3251.
[14]
Zhang, K.; Zhang, N.; Zhang, L.; Wang, H.; Shi, H.; Liu, Q. Simultaneous voltammetric detection of dopamine, ascorbic acid and uric acid using a poly(2-(N-morpholine)ethane sulfonic acid)/RGO modified electrode. RSC Adv, 2018, 8, 5280-5285.
[15]
Wang, Z.; Guo, H.; Gui, R.; Jin, H.; Xia, J.; Zhang, F. Simultaneous and selective measurement of dopamine and uric acid using glassy carbon electrodes modified with a complex of gold nanoparticles and multiwall carbon nanotubes. Sens. Actuat B Chem., 2018, 255, 2069-2077.
[16]
Fu, L.; Wang, A.; Lai, G.; Su, W.; Malherbe, F.; Yu, J.; Lin, C.T.; Yu, A. Defects regulating of graphene ink for electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta, 2018, 180, 248-253.
[17]
Li, Q.; Huo, C.; Yi, K.; Zhou, L.; Su, L.; Hou, X. Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuat B Chem., 2018, 260, 346-356.
[18]
Tig, G.A. Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and L-tryptophan based on Ag nanoparticles and poly(L-arginine)-graphene oxide composite. J. Electroanal. Chem., 2017, 807, 19-28.
[19]
Yadav, D.K.; Gupta, R.; Ganesan, V.; Sonkar, P.K. Individual and simultaneous voltammetric determination of ascorbic acid, uric acid and folic acid by using a glassy carbon electrode modified with gold nanoparticles linked to bentonite via cysteine groups. Microchim. Acta, 2017, 184, 1951-1957.
[20]
Jesny, S.; Kumar, K.G. Electrocatalytic resolution of guanine, adenine and cytosine along with uric acid on poly (4-amino-3-hydroxy naphthalene-1-sulfonic acid) modified glassy carbon electrode. J. Electroanal. Chem., 2017, 801, 153-161.
[21]
Yao, Y.; Zhang, C. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Biomed. Microdevices, 2016, 18, 92.
[22]
Zou, C.; Zhong, J.; Li, S.; Wang, H.; Wang, J.; Yan, B.; Du, Y. Fabrication of reduced graphene oxide-bimetallic PdAu nanocomposites for the electrochemical determination of ascorbic acid, dopamine, uric acid and rutin. J. Electroanal. Chem., 2017, 805, 110-119.
[23]
Zhu, D.; Ma, H.; Pang, H.; Tan, L.; Jiao, J.; Chen, T. Facile fabrication of a non-enzymatic nanocomposite of heteropolyacids and CeO2@Pt alloy nanoparticles doped reduced graphene oxide and its application towards the simultaneous determination of xanthine and uric acid. Electrochim. Acta, 2018, 266, 54-65.
[24]
Tian, F.; Li, H.; Li, M.; Li, C.; Lei, Y.; Yang, B. A tantalum electrode coated with graphene nanowalls for simultaneous voltammetric determination of dopamine, uric acid, L-tyrosine, and hydrochlorothiazide. Microchim. Acta, 2017, 184, 1611-1619.
[25]
Liu, J.; Xie, Y.; Wang, K.; Zeng, Q.; Liu, R.; Liu, X. A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer for voltammetric determination of dopamine, paracetamol and uric acid. Microchim. Acta, 2017, 184, 1739-1745.
[26]
Habib, I.H.I.; Rizk, M.S.; Abou El-Alaminb, M.M.; Imam, G.S. Cathodic stripping voltammetric determination of febuxostat in pharmaceutical dosage form and plasma samples. Port. Electrochemical. Acta, 2016, 34, 343-353.
[27]
Jain, R.; Sinha, A. Multi-walled carbon nanotubes-aluminium titanate nanocomposite sensor for electrocatalytic quantification of non-purine xanthine oxidase inhibitor febuxostat. Sci. Lett. J., 2015, 4, 151-155.
[28]
Jain, R.; Sinha, A. Dhanjai, Karolia, P.; Khan, A.L. Zinc oxide nanoflowers based graphene nanocomposite platform for catalytic studies of febuxostat. Int. J. Electrochem. Sci., 2016, 11, 10223-10237.
[29]
Nigović, B.; Milanović, I. Green electroanalytical method for fast measurement of xanthine oxidase inhibitor febuxostat. Anal. Sci., 2017, 33, 1219-1223.
[30]
Svítková, J.; Ignat, T. ˇSvorc, L’.; Labuda, J.; Barek, J. Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Crit. Rev. Anal. Chem., 2016, 46, 248-256.
[31]
Pecková, K.; Musilová, J.; Barek, J. Boron-doped diamond film electrodes - new tool for voltammetric determination of organic substances. Crit. Rev. Anal. Chem., 2009, 39, 148-172.
[32]
Nigović, B.; Sadiković, M.; Jurić, S. Electrochemical sensing of mesalazine and its N-acetylated metabolite in biological samples using functionalized carbon nanotubes. Talanta, 2016, 147, 50-58.
[33]
Sadiković, M.; Nigović, B.; Jurić, S.; Mornar, A. Voltammetric determination of ropinirole in the presence of levodopa at the surface of a carbon nanotubes based electrochemical sensor in pharmaceuticals and human serum. J. Electroanal. Chem., 2014, 733, 60-68.
[34]
International Conference on Harmonization (ICH) Validation of Analytical Procedures: Text and Methodology Q2 (R1), 2005
[35]
Sano, K.; Kodama, Y.; Hirano, M.; Takishima, I.; Makino, A.; Nakamura, T.; Kitta, Y.; Kawabata, K.; Obata, J.; Kugiyama, K. High plasma levels of endogenous free dopamine predict an adverse outcome in patients with heart disease and chronic kidney disease. Circulation, 2008, 118, S434.