[1]
Lagorce, D.; Douguet, D.; Miteva, M.A.; Villoutreix, B.O. Computational analysis of calculated physicochemical and ADMET properties of protein- protein interaction inhibitors. Sci. Rep., 2017, 7, 46277.
[2]
Wenlock, M.C.; Barton, P. In silico physicochemical parameter predictions. Mol. Pharmaceut., 2013, 10(4), 1224-1235.
[3]
Zhang, X.; Xing, H.; Zhao, Y.; Ma, Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics, 2018, 10(3), 74.
[4]
Munjal, N.S.; Dutta, S.; Sharma, M.; Rout, C. QSAR and QSPR model development and comparison for drugs having low solubility. Intl. J. Eng. Technol. Sci. Res., 2017, 4(12), 313-318.
[5]
Singh, G.; Kaur, I.; Gupta, G.D.; Sharma, S. Enhancement of the solubility of poorly water soluble drugs through solid dispersion: A comprehensive review. Indian J. Pharm. Sci., 2017, 79(5), 674-687.
[6]
Mirza, R.M.; Ahirrao, S.P.; Kshirsagar, S.J. A nanocrystal technology: to enhance solubility of poorly water soluble drugs. J. Appl. Pharm. Res., 2017, 5(1), 1-13.
[7]
Basavaraj, S.; Betageri, G.V. Can formulation and drug delivery reduce attrition during drug discovery and development—review of feasibility, benefits and challenges. Acta Pharm. Sin. B, 2014, 4(1), 3-17.
[8]
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J.H. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499.
[9]
Vimalson, D.C.S.; Parimalakrishnan, S.; Jeganathan, N.S.; Anbazhagan, S. Techniques to enhance solubility of hydrophobic drugs: an overview. Asian J. Pharmaceut., 2016, 10(2), 67-75.
[10]
Alelyunas, Y.W.; Empfield, J.R.; McCarthy, D.; Spreen, R.C.; Bui, K.; Pelosi-Kilby, L.; Shen, C. Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate. Bioorg. Med. Chem. Lett., 2010, 20(24), 7312-7316.
[11]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: importance and enhancement techniques. ISRN Pharmaceut., 2012, 2012, 10.
[12]
Göke, K.; Lorenz, T.; Repanas, A.; Schneider, F.; Steiner, D.; Baumann, K.; Bunjes, H.; Dietzel, A.; Finke, J.H.; Glasmacher, B.; Kwade, A. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur. J. Pharm. Biopharm., 2018, 126, 40-56.
[13]
Elouzi, A.A.; El-Buzidi, N.O. A review on solubility enhancement techniques of poor water-soluble drugs for oral pharmaceutical formulation. Annals Adv. Sci, 2017, 1(3), 9-27.
[14]
Bouakkadia, A.; Haddag, H.; Bouarra, N.; Messadi, D. QSPR study of the water solubility of a diverse set of agrochemicals: hybrid (GA/ MLR) approach. Rev. Sci. Technol. Synthese, 2016, 32, 12-21.
[15]
Yalkowsky, S.H.; Banerjee, S. Aqueous solubility: methods of estimation for organic compounds; Marcel Dekker: New York, 1992.
[16]
Murdande, S.B.; Pikal, M.J.; Shanker, R.M.; Bogner, R.H. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement. Pharm. Dev. Technol., 2011, 16(3), 187-200.
[17]
Grant, D.J.W.; Higuchi, T. Solubility behavior of organic compounds; New York: John Wiley & Sons , 1990.
[18]
Balakin, K.V.; Savchuk, N.P.; Tetko, I.V. In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: Trends, problems and solutions. Curr. Med. Chem., 2006, 13(2), 223-241.
[19]
Jorgensen, W.L.; Duffy, E.M. Prediction of drug solubility from structure. Adv. Drug Deliv. Rev., 2002, 54(3), 355-366.
[20]
Box, K.J.; Völgyi, G.; Baka, E.; Stuart, M.; Takács-Novák, K.; Comer, J.E. Equilibrium versus kinetic measurements of aqueous solubility, and the ability of compounds to supersaturate in solution-a validation study. J. Pharm. Sci., 2006, 95(6), 1298-1307.
[22]
Dearden, J.C. In silico prediction of aqueous solubility. Expert Opin. Drug Discov., 2006, 1(1), 31-52.
[23]
Faller, B.; Ertl, P. Computational approaches to determine drug. Adv. Drug Deliv. Rev., 2007, 59(7), 533-545.
[24]
Johnson, S.R.; Zheng, W. Recent progress in the computational prediction of aqueous solubility and absorption. AAPS J., 2006, 8(1), E27-E40.
[25]
Sugano, K.; Okazaki, A.; Sugimoto, S.; Tavornvipas, S.; Omura, A.; Mano, T. Solubility and dissolution profile assessment in drug discovery. Drug Metab. Pharmacokinet., 2007, 22(4), 225-254.
[26]
Wang, J.; Hou, T. Recent advances on aqueous solubility prediction. Comb. Chem. High Throughput Screen., 2011, 14(5), 328-338.
[27]
Skyner, R.E.; McDonagh, J.L.; Groom, C.R.; van Mourika, T.; Mitchell, J.B.O. A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys., 2015, 17(9), 6174-6191.
[28]
Lipnick, R.L.; Filov, V.A. Nikolai Vasilyevich Lazarev, toxicologist and pharmacologist, comes in from the cold. Trends Pharmacol. Sci., 1992, 13(2), 56-60.
[29]
Hansch, C. Quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res., 1969, 2(8), 232-239.
[30]
Michielan, L.; Moro, S. Pharmaceutical perspectives of nonlinear QSAR strategies. J. Chem. Inf. Model., 2010, 50(6), 961-978.
[31]
Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1882-1889.
[32]
Sheridan, R.P. Time-split cross-validation as a method for estimating the goodness of prospective prediction. J. Chem. Inf. Model., 2013, 53(4), 783-790.
[33]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[34]
Klimenko, K.; Kuz’min, V.; Ognichenko, L.; Gorb, L.; Shukla, M.; Vinas, N.; Perkins, E.; Polishchuk, P.; Artemenko, A.; Leszczynski, J. Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility. J. Comput. Chem., 2016, 37(22), 2045-2051.
[35]
Dave, R.A.; Morris, M.E. Novel high/low solubility classification methods for new molecular entities. Int. J. Pharm., 2016, 511(1), 111-126.
[36]
Cappelli, C.I.; Manganelli, S.; Lombardo, A.; Gissi, A.; Benfenati, E. Validation of quantitative structure–activity relationship models to predict water-solubility of organic compounds. Sci. Total Environ., 2013, 463-464, 781-789.
[37]
Enciso, M.; Meftahi, N.; Walker, M.L.; Smith, B.J. BioPPSy: An open-source platform for QSAR/QSPR Analysis. PLoS One, 2016, 11(11), e0166298.
[38]
Chevillard, F.; Lagorce, D.; Reynès, C.; Villoutreix, B.O.; Vayer, P.; Miteva, M.A. In silico prediction of aqueous solubility: A multimodel protocol based on chemical similarity. Mol. Pharm., 2012, 9(11), 3127-3135.
[39]
Tetko, I.V.; Tanchuk, V.Y.; Kasheva, T.N.; Villa, A.E.P. Estimation of aqueous solubility of chemical compounds using e-state indices. J. Chem. Inf. Comput. Sci., 2001, 41, 1488-1493.
[40]
Cheng, A.; Merz, K.M. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure property relationships. J. Med. Chem., 2003, 46, 3572-3580.
[42]
Hou, T.J.; Xia, K.; Zhang, W.; Xu, X.J. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci., 2004, 44(1), 266-275.
[46]
Lagorce, D.; Maupetit, J.; Baell, J.; Sperandio, O.; Tuffery, P.; Miteva, M.A.; Galona, H.; Villoutreix, B.O. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics, 2011, 27(14), 2018-2020.
[47]
Tetko, I.V.; Tanchuk, V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1136-1145.
[49]
Palmer, D.S.; Mitchell, J.B.O. Is experimental data quality the limiting factor in predicting the aqueous solubility of drug like molecules? Mol. Pharm., 2014, 11(8), 2962-2972.
[50]
Zhou, D.; Alelyunas, Y.; Liu, R. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility. J. Chem. Inf. Model., 2008, 48(5), 981-987.
[51]
Emami, S.; Jouyban, A.; Valizadeh, H.; Shayanfar, A. Are crystallinity parameters critical for drug solubility prediction? J. Solution Chem., 2015, 44(12), 2297-2315.
[52]
Hewitt, M.; Cronin, M.T.D.; Enoch, S.J.; Madden, J.C.; Roberts, D.W.; Dearden, J.C. In silico prediction of aqueous solubility: the solubility challenge. Chem. Inf. Model., 2009, 49(11), 2572-2587.
[53]
Abramov, Y.A. Major source of error in QSPR prediction of intrinsic thermodynamic solubility of drugs: Solid vs nonsolid state contributions? Mol. Pharm., 2015, 12(6), 2126-2141.
[54]
Salahinejad, M.; Le, T.C.; Winkler, D.A. Aqueous solubility prediction: Do crystal lattice interactions help? Mol. Pharm., 2013, 10(7), 2757-2766.
[55]
Kuehne, W.R. Predicting aqueous solubility from structure Journal of the University of Applied Sciences Mittweida Proceedings of the 20. IWKM, 28-29. Oct 2009.
[56]
MDL Information Systems. Beilstein crossfire database, 2005.
[57]
NY Syracuse Research Corporation, Environmental Science Center Syracuse. Physical/chemical property database. 2005.
[58]
Schaper, K-J.; Kunz, B.; Raevsky, O.A. Analysis of water solubility data on the basis of HYBOT descriptors Part 2. Solubility of liquid chemicals and drugs. QSAR Comb. Sci., 2003, 22(9-10), 943-958.
[59]
Raevsky, O.A.; Trepalin, S.V.; Trepalina, H.P.; Gerasimenko, V.A.; Raevskaja, O.E. SLIPPER-2001 – software for predicting molecular properties on the basis of physicochemical descriptors and structural similarity. J. Chem. Inf. Comput. Sci., 2002, 42(3), 540-549.
[60]
Hansen, N.T.; Kouskoumvekaki, I.; Jørgensen, F.S.; Brunak, S.; Jónsdóttir, S.O. Prediction of pH-dependent aqueous solubility of druglike molecules. J. Chem. Inf. Model., 2006, 46(6), 2601-2609.
[61]
Lee, A.C.; Crippen, G.M. Predicting pKa. J. Chem. Inf. Model., 2009, 49(9), 2013-2033.
[62]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23(1-3), 3-25.
[63]
Stuart, M.; Box, K. Chasing equilibrium: Measuring the intrinsic solubility of weak acids and bases. Analyt. Chem., 2005, 77(4), 983-990.
[64]
Cheng, T.; Li, Q.; Wang, Y.; Bryant, S.H. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. J. Chem. Inf. Model., 2011, 51(2), 229-236.
[65]
Raevsky, O.A. Molecular structure descriptors in the computer-aided design biologically active compounds. Russ. Chem. Rev., 1999, 68(6), 505-524.
[66]
Dearden, J.C.; Cronin, M.T.D.; Kaiser, K.L.E. How not to develop a quantitative structure–activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res., 2009, 20(3-4), 241-266.
[67]
Breiman, L. Random forests. Machine Learning., 2001, 45(1), 5-32.
[68]
Ivanciuc, O. Applications of support vector machines in chemistry. In: Reviews in computational chemistry; Lipkowitz, K.B. and Cundari. T.R., Eds.; Wiley-VCH, Weinheim,, 2007; Vol. 23, pp. 291-400.
[69]
MacKay, D.J.C. Information theory, inference, and learning algorithms; Cambridge University Press: Cambridge, United Kingdom, 2003.
[70]
Rasmussen, C.E.; Williams, C.K.I. Gaussian processes for machine learning. the MIT Press 2006.
[71]
Hanch, C.; Quinlan, J.E.; Lawrence, G.L. Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J. Org. Chem., 1968, 33(1), 347-350.
[72]
Mannhold, R.; Poda, G.I.; Ostermann, C.; Tetko, I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci., 2009, 98(3), 861-893.
[73]
Yalkowsky, S.H.; Valvani, S.C. Solubility and partitioning i: solubility of nonelectrolytes in water. J. Pharm. Sci., 1980, 69(8), 912-922.
[74]
Raevsky, O.A.; Schaper, K-J.; van de Waterbeemd, H.; McFarland, J.W. Hydrogen bond contributions to properties and activity of chemicals and drugs. In: molecular modeling and prediction of bioactivity; Gundertofte, K., Jorgensen, F. S., Eds.; Kluwer Academic/ Plenum Publishers: New York, Boston, Dordrecht, London, Moscow, 2000; pp. 221-227.
[75]
Abraham, H.; Le, J. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J. Pharm. Sci., 1999, 88(9), 868-880.
[76]
Ran, Y.; He, Y.; Yang, G.; Johnson, J.L.H.; Yalkowsky, S.H. Estimation of aqueous solubility of organic compounds by using the general solubility equation. Chemosphere, 2002, 48(5), 487-509.
[77]
Raevsky, O.A.; Polianczyk, D.E.; Grigorev, V.Y.; Raevskaja, O.E.; Dearden, J.C. In silico prediction of aqueous solubility: A comparative study of local and global predictive models. Mol. Inform., 2015, 34(6-7), 2-16.
[78]
Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties. J. Chem. Inf. Model., 2012, 52(11), 2950-2957.
[79]
Warr, W.A. Some trends in chemoinformatics. Methods Mol. Biol., 2011, 672, 1-37.
[80]
Wold, S.; Sjostrom, M. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. In: Chemometrics Theory and Application; Kowalski, B. R., Ed.; American Chemical Society Symposium Series 52, 1977; pp. 243-282.
[81]
Raevsky, O.A.; Sapegin, A.M.; Zefirov, N.S. Discriminant-regression model. In: QSAR: Rational approaches in the design of bioactive compounds; Silipo, C.; Vittoria, A., Eds.; Elsevier: Amsterdam, 1991; pp. 189-192.
[82]
Raevsky, O.A.; Sapegin, A.M.; Zefirov, N.S. The QSAR discriminant-regression model. QSAR, 1994, 13(4), 412-418.
[83]
Raevsky, O.A. Molecular lipophilicity calculations of chemically heterogeneous chemicals and drugs on the basis of structural similarity and physicochemical parameters. SAR QSAR Environ. Res., 2001, 12(4), 367-381.
[84]
Raevsky, O.A.; Grigorev, V.Y.; Polianczyk, D.E.; Raevskaja, O.E.; Dearden, J.C. Six global and local QSPR models of aqueous solubility at pH=7.4 based on structural similarity and physicochemical descriptors. SAR QSAR Environ. Res., 2017, 28(8), 661-676.
[85]
Guha, R.; Dutta, D.; Jurs, P.C.; Chen, T. Local lazy regression: making use of the neighborhood to improve QSAR predictions. J. Chem. Inf. Model., 2006, 46(4), 1836-1847.
[86]
Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J. Chem. Inf. Model., 2006, 46(5), 1984-1995.
[87]
Raevsky, O.A.; Grigor’ev, V.Y.; Modina, E.A.; Worth, A.P. Prediction of acute toxicity to mice by the Arithmetic Mean Toxicity (AMT) modelling approach. SAR QSAR Environ. Res., 2010, 21(3-4), 265-275.
[88]
Raevsky, O.A.; Grigor’ev, V.Y.; Liplavskaya, E.A.; Worth, A.P. Prediction of acute rodent toxicity on the basis of chemical structure and physicochemical similarity. Mol. Inform., 2011, 30(2-3), 267-275.
[89]
Raevsky, O.A.; Grigor’ev, V.Y.; Polianczyk, D.E.; Raevskaja, O.E.; Dearden, J.C. Calculation of aqueous solubility of crystalline un-ionized organic chemicals and drugs based on structural similarity and physicochemical descriptors. J. Chem. Inf. Model., 2014, 54(2), 683-691.
[90]
Obrezanova, O.; Csanyi, G.; Gola, J.M.; Segall, M.D. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J. Chem. Inf. Model., 2007, 47(5), 1847-1857.