Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis, Anti-proliferative Evaluation, and Molecular Docking Studies of 3-(alkylthio)-5,6-diaryl-1,2,4-triazines as Tubulin Polymerization Inhibitors

Author(s): Farhad Saravani, Ebrahim Saeedian Moghadam, Hafezeh Salehabadi, Seyednasser Ostad, Morteza Pirali Hamedani, Massoud Amanlou, Mohammad Ali Faramarzi and Mohsen Amini*

Volume 16, Issue 11, 2019

Page: [1194 - 1201] Pages: 8

DOI: 10.2174/1570180815666180727114216

Price: $65

Abstract

Background: The role of microtubules in cell division and signaling, intercellular transport, and mitosis has been well known. Hence, they have been targeted for several anti-cancer drugs.

Methods: A series of 3-(alkylthio)-5,6-diphenyl-1,2,4-triazines were prepared and evaluated for their cytotoxic activities in vitro against three human cancer cell lines; human colon carcinoma cells HT-29, human breast adenocarcinoma cell line MCF-7, human Caucasian gastric adenocarcinoma cell line AGS as well as fibroblast cell line NIH-3T3 by MTT assay. Docking simulation was performed to insert these compounds into the crystal structure of tubulin at the colchicine binding site to determine a probable binding model. Compound 5d as the most active compound was selected for studying of microtubule disruption.

Results: Compound 5d showed potent cytotoxic activity against all cell lines. The molecular modeling study revealed that some derivatives of triazine strongly bind to colchicine binding site. The tubulin polymerization assay kit showed that the cytotoxic activity of 5d may be related to inhibition of tubulin polymerization.

Conclusion: The cytotoxicity and molecular modeling study of the synthesized compounds with their inhibition activity in tubulin polymerization demonstrate the potential of triazine derivatives for development of new anti-cancer agents.

Keywords: Synthesis, anti-proliferative, triazines, anti-tubulin, docking, cytotoxic activity.

Graphical Abstract

[1]
Thiriveedhi, A.; Venkata Nadh, R.; Srinivasu, N.; Kaushal, K. Novel hybrid molecules of isoxazole chalcone derivatives: Synthesis and study of in vitro cytotoxic activities. Lett. Drug Des. Discov., 2018, 15(6), 576-582.
[http://dx.doi.org/10.2174/1570180814666170914121740]
[2]
Yong, J.; Lu, C.; Wu, X. Synthesis and preliminarily cytotoxicity to A549, HCT116 and MCF-7 cell lines of thieno[2,3-d]pyrimidine derivatives containing isoxazole moiety. Lett. Drug Des. Discov., 2018, 15(5), 463-474.
[http://dx.doi.org/10.2174/1570180814666170530093549]
[3]
Huan, L.C.; Pham-The, H.; Le-Thi-Thu, H.; Thao, T.P.; Que, D.N.; Trang, N.T.; Dung, P.T.P.; Pyo, M.; Han, S.; Thuan, N.T.; Nam, N.H. Exploration of some thiazolidine-2,4-dione and 2-oxoindoline derivatives incorporating 3,4,5-trimethoxybenzyl moiety as novel anticancer agents. Lett. Drug Des. Discov., 2018, 15(4), 375-387.
[http://dx.doi.org/10.2174/1570180814666170605122552]
[4]
Rezaei, Z.; Moghimi, S.; Javaheri, R.; Asadi, M.; Mahdavi, M.; Shabani, S.; Edraki, N.; Firuzi, O.; Safavi, S.; Amini, M.; Asadipour, A.; Zeinalzadeh, E.; Firoozpour, L.; Foroumadi, A. Synthesis and biological evaluation of 1,3,4-thiadiazole linked phthalimide derivatives as anticancer agents. Lett. Drug Des. Discov., 2017, 14(10), 1138-1144.
[http://dx.doi.org/10.2174/1570180814666170127164759]
[5]
Elagawany, M.; Ibrahim, M.A.; Ibrahim, T.S. AL-Mahmoudy, A.M.M.; Moawad, A.; Ghoneim, M.M.; Radwan, M.M.; Siva S. Panda, S.S. synthesis and anticancer studies of novel N-benzyl pyridazinone derivatives. Lett. Drug Des. Discov., 2017, 14(9), 1008-1013.
[http://dx.doi.org/10.2174/1570180814666170223111312]
[6]
Walczak, C.E. Microtubule dynamics and tubulin interacting proteins. Curr. Opin. Cell Biol., 2000, 12(1), 52-56.
[http://dx.doi.org/10.1016/S0955-0674(99)00056-3]
[7]
Li, Y.W.; Liu, J.; Liu, N.; Shi, D.; Zhou, X.T.; Lv, J.G.; Zhu, J.; Zheng, C.H.; Zhou, Y.J. Imidazolone-amide bridges and their effects on tubulin polymerization in cislocked vinylogous combretastatin-A4 analogues: Synthesis and biological evaluation. Bioorg. Med. Chem., 2011, 19(11), 3579-3584.
[http://dx.doi.org/10.1016/j.bmc.2011.03.068]
[8]
Assadieskandar, A.; Amini, M.; Ostad, S.N.; Riazi, G.H.; Cheraghi-Shavi, T.; Shafiei, B.; Shafiee, A. Design, synthesis, cytotoxic evaluation and tubulin inhibitory activity of 4-aryl-5-(3,4,5-trimethoxyphenyl)-2-alkylthio-1H-imidazole deriva-tives. Bioorg. Med. Chem., 2013, 21(10), 2703-2709.
[http://dx.doi.org/10.1016/j.bmc.2013.03.011]
[9]
Salehi, M.; Amini, M.; Ostad, S.N.; Riazi, G.H.; Assadie-skandar, A.; Shafiei, B.; Shafiee, A. Synthesis, cytotoxic evaluation and molecular docking study of 2-alkylthio-4-(2,3,4-trimethoxyphenyl)-5-aryl-thiazoles as tubulin polymerization inhibitors. Bioorg. Med. Chem., 2013, 21(24), 7648-7654.
[http://dx.doi.org/10.1016/j.bmc.2013.10.030]
[10]
Aryapour, H.; Riazi, G.H.; Foroumadi, A.; Ahmadian, S.; Shafiee, A.; Karima, O.; Mahdavi, M.; Emami, S.; Sorkhi, M.; Khodadady, S. Biological evaluation of synthetic analogues of curcumin: chloro-substituted-2′-hydroxychalcones as potential inhibitors of tubulin polymerization and cell proliferation. Med. Chem. Res., 2011, 20(4), 503-510.
[http://dx.doi.org/10.1007/s00044-010-9344-z]
[11]
Ohsumi, K.; Hatanaka, T.; Fujita, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga, Y.; Morinaga, Y.; Akiyama, Y.; Tsuji, T. Syntheses and antitumor activity of cisrestricted combretastatins: 5-membered heterocyclic analogues. Bioorg. Med. Chem. Lett., 1998, 17, 3153-3158.
[12]
Wu, M.J.; Sun, Q.M.; Yang, C.H.; Chen, D.D.; Ding, J.; Chen, Y.; Lin, L.P.; Xie, Y.Y. Synthesis and activity of Combretastatin A-4 analogues: 1,2,3-thiadiazoles as potent antitumor agents. Bioorg. Med. Chem. Lett., 2007, 17(4), 869-873.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.060]
[13]
Wu, M.J.; Sun, Q.M.; Yang, C.H.; Chen, D.D.; Ding, J.; Chen, Y.; Lin, L.P.; Xie, Y.Y. Synthesis and activity of Combretastatin A-4 analogues: 1,2,3-thiadiazoles as potent antitumor agents. Bioorg. Med. Chem. Lett., 2007, 17(4), 869-873.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.060]
[14]
Ghadbeighi, S.; Ostad, S.N.; Shafiee, A.; Amini, M. Synthesis and anticancer activity of 1,3,5-triaryl-1H-pyrazole. Lett. Drug Des. Discov., 2015, 12, 754-759.
[http://dx.doi.org/10.2174/1570180812666150326004723]
[15]
Elahian, F.; Akbari, M.; Ghasemi, M.; Behtooee, N.; Taheri, M.; Amini, M. Synthesis and anticancer activity of 2,4,5-imidazole derivatives. Lett. Drug Des. Discov., 2014, 11, 840-843.
[http://dx.doi.org/10.2174/1570180811666140313233659]
[16]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Preti, D.; Ta-brizi, M.A.; Brancale, A.; Fu, X.H.; Li, J.; Zhang, S.Z.; Ha-mel, E.; Bortolozzi, R.; Porcu, E.; Basso, G.; Viola, G. Dis-covery and Optimization of a Series of 2-Aryl-4-Amino-5-(3′,4′,5′-trimethoxybenzoyl)Thiazoles as Novel Anticancer Agents J. Med. Chem., 2012, 55(11), 5433-7445.
[http://dx.doi.org/10.1021/jm300388h]
[17]
Ansari, N.; Khodagholi, F.; Ramin, M.; Amini, M.; Irannejad, H.; Dargahi, L. Dehghani Amirabad, Inhibition of LPS-induced apoptosis in differentiated-PC12 cells by new triazine derivatives through NF-kB-mediated suppression of COX-2A. Neurochem. Int., 2010, 57, 958-968.
[http://dx.doi.org/10.1016/j.neuint.2010.10.002]
[18]
Irannejad, H.; Amini, M.; Khodagholi, F.; Ansari, N.; Tusi, S.K.; Sharifzadeh, M.; Shafiee, A. Synthesis and in vitro evaluation of novel 1,2,4-triazine derivatives as neuroprotective agents. Bioorg. Med. Chem., 2010, 18(12), 4224-4230.
[http://dx.doi.org/10.1016/j.bmc.2010.04.097]
[19]
Santoshi, S.; Manchukonda, N.K.; Suri, C.; Sharma, M.; Sri-dhar, B.; Joseph, B.; Lopus, M.; Kantevari, S.; Baitharu, I.; Naik, P.K. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents. J. Comput. Aided Mol. Des., 2015, 29(3), 249-270.
[http://dx.doi.org/10.1007/s10822-014-9820-5]
[20]
Singh, H.; Singh, J.V.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett., 2017, 27, 3974-3979.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.069]
[21]
Singh, H.; Kumar, M.; Nepali, K.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Bedi, P.M.S. Triazole tethered C5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Eur. J. Med. Chem., 2016, 116, 102-115.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.050]
[22]
Guan, Q.; Han, C.; Zuo, D. Zhai, Li, Z.; Zhang,Q.; Zhai, Y.; Jiang, X.; Bao K.; Wu, Y.; Zhang, W. Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for anti-proliferative and antitubulin activities. Eur. J. Med. Chem., 2014, 87, 306-315.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.071]
[23]
Liu, J.; Zuo, D.; Jing, T.; Guo, M.; Xing, L.; Zhang, W.; Zhao, J.; Shen, J.; Gong, P.; Zhang, D.; Zhai, X. Synthesis, biological evaluation and molecular modeling of imidazo[1,2-α]pyridine derivatives as potent antitubulin agents. Bioorg. Med. Chem., 2017, 25, 4088-4099.
[http://dx.doi.org/10.1016/j.bmc.2017.05.057]

© 2024 Bentham Science Publishers | Privacy Policy