[1]
Sheet, F. World Malaria Report, 2015.
[2]
Skinner, T.S.; Manning, L.S.; Johnston, W.A.; Davis, T.M. In vitro stage-specific sensitivity of Plasmodium falciparum to quinine and artemisinin drugs. Int. J. Parasitol., 1996, 26(5), 519-525.
[3]
White, N.J. Qinghaosu (artemisinin): The price of success. Science, 2008, 320(5874), 330-334.
[4]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220.
[5]
Bhakuni, R.S.; Jain, D.C.; Sharma, R.P. Phytochemistry of Artemisia annua and the development of artemisinin-derived antimalarial agents. Artemisia. Medicinal and aromatic plants-Industrial profiles; Wright, C.W., Ed.; Taylor & Francis Inc: London, 2002, pp. 211-247.
[6]
Olliaro, P.L.; Taylor, W.R. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review. J. Postgrad. Med., 2004, 50(1), 40-44.
[7]
Cockburn, I.A.; Mackinnon, M.J.; O’Donnell, A.; Allen, S.J.; Moulds, J.M.; Baisor, M.; Bockarie, M.; Reeder, J.C.; Rowe, J.A. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 272-277.
[8]
Jambou, R.; Legrand, E.; Niang, M.; Khim, N.; Lim, P.; Volney, B.; Ekala, M.T.; Bouchier, C.; Esterre, P.; Fandeur, T.; Mercereau-Puijalon, O. Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet, 2005, 366(9501), 1960-1963.
[9]
Hale, V.; Keasling, J.D.; Renninger, N.; Diagana, T.T. Microbially derived artemisinin: A biotechnology solution to the global problem of access to affordable antimalarial drugs. Am. J. Trop. Med. Hyg., 2007, 77(6)(Suppl.), 198-202.
[10]
Westfall, P.J.; Pitera, D.J.; Lenihan, J.R.; Eng, D.; Woolard, F.X.; Regentin, R.; Horning, T.; Tsuruta, H.; Melis, D.J.; Owens, A.; Fickes, S.; Diola, D.; Benjamin, K.R.; Keasling, J.D.; Leavell, M.D.; McPhee, D.J.; Renninger, N.S.; Newman, J.D.; Paddon, C.J. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl. Acad. Sci. USA, 2012, 109(3), E111-E118.
[11]
Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D.R.; Teoh, K.H.; Reed, D.W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K.W.; Fickes, S.; Galazzo, J.; Gaucher, S.P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L.F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P.S.; Keasling, J.D.; Reiling, K.K.; Renninger, N.S.; Newman, J.D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446), 528-532.
[12]
Azerad, R. Microbial transformations of artemisinin and artemisinin derivatives: An example of the microbial generation of molecular diversity. Curr. Bioact. Compd., 2012, 8(2), 151-158.
[13]
Zeng, Q.; Qiu, F.; Yuan, L. Production of artemisinin by genetically-modified microbes. Biotechnol. Lett., 2008, 30(4), 581-592.
[14]
Turschner, S.; Efferth, T. Drug resistance in Plasmodium: Natural products in the fight against malaria. Mini Rev. Med. Chem., 2009, 9(2), 206-224.
[15]
Ekthawatchai, S.; Kamchonwongpaisan, S.; Kongsaeree, P.; Tarnchompoo, B.; Thebtaranonth, Y.; Yuthavong, Y. C-16 artemisinin derivatives and their antimalarial and cytotoxic activities: Syntheses of artemisinin monomers, dimers, trimers, and tetramers by nucleophilic additions to artemisitene. J. Med. Chem., 2001, 44(26), 4688-4695.
[16]
Brisibe, E.A.; Uyoh, E.A.; Brisibe, F.; Magalhaes, P.M.; Ferreira, J.F.S. Building a golden triangle for the production and use of artemisinin derivatives against falciparum malaria in Africa. Afr. J. Biotechnol., 2008, 7(25), 4884-4896.
[17]
Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev., 2010, 39(2), 435-454.
[18]
World Health Organization WHO Model List of Essential Medicines,
18th List,, 2013. [Retrieved July 29, 2016];
[19]
Esu, E.; Effa, E.E.; Opie, O.N.; Uwaoma, A.; Meremikwu, M.M. Artemether for severe malaria. Cochrane Database Syst. Rev., 2014, 9(9)CD010678
[20]
Kumar, P.; Dubey, K.K. Current trends and future prospects of lipstatin: A lipase inhibitor and pro-drug for obesity. RSC Advances, 2015, 5, 86954-86966.
[21]
Dubey, K.K.; Jawed, A.; Haque, S. Enhanced extraction of 3‐demethylated colchicine from fermentation broth of Bacillus megaterium: Optimization of process parameters by statistical experimental design. Eng. Life Sci., 2011, 11(6), 598-606.
[22]
Dhingra, S.; Bhushan, G.; Dubey, K.K. Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm. Front. Energy, 2013, 7(4), 495-505.
[23]
Chakravarti, R.; Sahai, V. Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Process Biochem., 2002, 38(4), 481-486.
[24]
Guantai, E.; Chibale, K. How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials? Malar. J., 2011, 10(Suppl. 1), S2.
[25]
Gamo, F.J.; Sanz, L.M.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J.L.; Vanderwall, D.E.; Green, D.V.; Kumar, V.; Hasan, S.; Brown, J.R.; Peishoff, C.E.; Cardon, L.R.; Garcia-Bustos, J.F. Thousands of chemical starting points for antimalarial lead identification. Nature, 2010, 465(7296), 305-310.
[26]
Tabanca, N.; Demirci, B.; Ali, A.; Khan, S.I.; Jacob, M.R.; Aytac, Z.; Khan, I.A. Chemical composition, biting deterrent, antimalarial and antimicrobial activity of essential oil from hypericum scabrum l. Curr. Bioact. Compd., 2015, 11, 62-72.
[27]
Goswami, A.; Saikia, P.P.; Barua, N.C.; Bordoloi, M.; Yadav, A.; Bora, T.C.; Gogoi, B.K.; Saxena, A.K.; Suri, N.; Sharma, M. Bio-transformation of artemisinin using soil microbe: Direct C-acetoxylation of artemisinin at C-9 by Penicillium simplissimum. Bioorg. Med. Chem. Lett., 2010, 20(1), 359-361.
[28]
Gaur, R.; Darokar, M.P.; Ajayakumar, P.V.; Shukla, R.S.; Bhakuni, R.S. In vitro antimalarial studies of novel artemisinin biotransformed products and its derivatives. Phytochemistry, 2014, 107, 135-140.
[29]
Stringham, R.W.; Teager, D.S. Streamlined process for the conversion of artemisinin to artemether. Org. Process Res. Dev., 2012, 16(5), 764-768.
[30]
Azerad, R. Microbial transformations of artemisinin and artemisinin derivatives: An example of the microbial generation of molecular diversity. Curr. Bioact. Compd., 2012, 8, 151-158.
[31]
Zhan, J.; Guo, H.; Dai, J.; Zhang, Y.; Guo, G. Microbial transformations of artemisinin by Cunninghamella echinulata and Aspergillus niger. Tetrahedron Lett., 2002, 43(25), 4519-4521.
[32]
Hashizume, T.; Higa, S.; Sasaki, Y.; Yamazaki, H.; Iwamura, H. Matsuda. H. Constituents of cane molasses. Agric. Biol. Chem., 1966, 30(4), 319-329.