[1]
Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye sensitized solar cells. Chem. Rev., 2010, 110, 6595-6663.
[2]
Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.I.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. (Camb.), 2010, 51, 15894-15897.
[3]
Kalyanasundaram, K. Dye-Sensitized Solar Cells; EPFL Press: Lausanne, 2010, pp. 295-296.
[5]
Yoon, S.; Tak, S.; Kim, J.; Jun, Y.; Kang, K.; Park, J. Application of transparent dye-sensitized solar cells to building integrated photovoltaic systems. Build. Environ., 2011, 46, 1899-1904.
[6]
Zhang, K.; Qin, C.; Yang, X.; Islam, A.; Zhang, S.; Chen, H.; Han, L. High-performance, transparent, dye-sensitized solar cells for see-through photovoltaic windows. Adv. Energy Mater., 2014, 4, 1301966.
[7]
Vos, J.J. Colorimetric and photometric properties of a 2° fundamental observer. Color Res. Appl., 1978, 3, 125-128.
[8]
Brown, M.D.; Suteewong, T.; Kumar, R.S.S.; D’Innocenzo, V.; Petrozza, A.; Lee, M.M.; Wiesner, U.; Snaith, H.J. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett., 2011, 11, 438-445.
[9]
Li, H.; Hong, W.; Cai, F.; Tang, Q.; Yan, Y.; Hu, X.; Zhao, B.; Zhang, D.; Xu, Z. Au@SiO2 nanoparticles coupling co-sensitizers for synergic efficiency enhancement of dye sensitized solar cells. J. Mater. Chem., 2012, 22, 24734-24743.
[10]
Xu, X.; Du, Q.; Peng, B.; Xiong, Q.; Hong, L.; Hilmi Volkan, D.; Wong, T.K.S.; Kyaw, A.K.K.; Sun, X.W. Effect of shell thickness on small-molecule solar cell enhanced by dual plasmonic gold-silica nanorods. Appl. Phys. Lett., 2014, 105, 113306.
[11]
Codrin, A.; Lestini, E.; Crosbie, S.; De Frein, C.; O’Really, T.; Zerulla, D. Plasmonic enhancement of dye sensitized solar cells via a tailored size-distribution of chemically funzionalized gold nanoparticles. PLoS One, 2014, 9, e109836.
[12]
Sheehan, S.W.; Noh, H.; Brudvig, G.W.; Cao, H.; Schmuttenmaer, C.A. Plasmonic enhancement of dye-sensitized solar cells using core−shell−shell nanostructures. J. Phys. Chem. C, 2013, 117, 927-934.
[13]
Gangishetty, M.K.; Scott, R.W.J.; Kelly, T.L. Panchromatic enhancement of light-harvesting efficiency in dye-sensitized solar cells using thermally annealed Au@SiO2 triangular nanoprism. Langmuir, 2014, 30(47), 14352-14359.
[14]
Liu, W.L.; Lin, F.C.; Yang, Y.C.; Huang, C.H.; Guo, S.; Huang, M.H.; Huang, J.S. The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale, 2013, 5, 7953-7962.
[15]
Meen, T.H.; Tsai, J.K.; Chao, S.M.; Lin, Y.C.; Wu, T.C.; Chang, T.Y.; Ji, L.W.; Water, W.; Chen, W.R.; Tang, I.T.; Huang, C.Y. Surface plasma resonant effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. Nanoscale Res. Lett., 2013, 8, 450.
[16]
Chandrasekhar, P.S.; Parashar, P.K.; Swami, S.K.; Dutta, V.; Komarata, V.K. Enhancement of Y123 dye-sensitized solar cell performance using plasmonic gold nanorods. Phys. Chem. Chem. Phys., 2018, 20, 9651-9658.
[17]
Bai, L.; Li, M.; Guo, K.; Luoshan, M.; Mehnane, H.F.; Pei, L.; Pan, M.; Liao, L.; Zhao, X. Plasmonic enhancement of the performance of dye-sensitized solar cell by core-shell AuNRs@SiO2 in composite photoanode. J. Power Sources, 2014, 272, 1100-1105.
[18]
Chang, J.; Lee, C.P.; Kumar, D.; Chen, P.W.; Lin, L.Y.; Thomas, K.R.J.; Ho, K.C. Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel pyrenoimidazole-based dye. J. Power Sources, 2013, 240, 779-785.
[19]
Lin, L.Y.; Yeh, M.H.; Lee, C.P.; Chang, J.; Baheti, A.; Vittal, R.; Thomas, K.R.J.; Ho, K.C. Insights into the co-sensitizer adsorption kinetics for complementary organic dye-sensitized solar cells. J. Power Sources, 2014, 247, 906-914.
[20]
Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B, 2006, 110, 7238-7248.
[21]
Wadams, R.C.; Yen, C.; Butcher, D.; Koerner, H.; Durstock, M.F.; Fabris, L.; Tabor, C.E. Gold nanorod enhanced organic photovoltaics: The importance of morphology effects. Org. Electron., 2014, 15, 1448-1457.
[22]
Chen, S.F.; Cheng, F.; Mei, Y.; Peng, B.; Kong, M.J.; Hao, Y.; Zhang, R.; Zhang, Q.H.; Xiong, Q.H.; Wang, L.H.; Huang, W. Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism. Appl. Phys. Lett., 2014, 104, 213903.
[23]
Jankovic, V.; Yang, Y.M.; You, J.; Dou, L.; Liu, Y.; Cheung, P.; Chang, J.P.; Yang, Y. Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS Nano, 2013, 7, 3815-3822.
[24]
Eperon, G.E.; Burkakov, V.M.; Goriely, A.; Snaith, H.J. Neutral color semitrasparent microstructured perovskite solar cells. ACS Nano, 2014, 8, 591-598.
[25]
Joy, N.A.; Janiszewski, B.K.; Novak, S.; Johnson, T.W.; Oh, S.H.; Raghunathan, A.; Hartley, J.; Carpenter, M.A. Thermal stability of gold nanorods for high temperature plasmonic sensing. J. Phys. Chem. C, 2013, 117, 11718-11724.
[26]
Zani, L.; Dagar, J.; Lai, S.; Centi, S.; Ratto, F.; Pini, R.; Calamante, M.; Mordini, A.; Reginato, G.; Mazzoni, M. Studies on the efficiency enhancement of co-sensitized, transparent DSSCs by employment of core-shell-shell gold nanorod. Inorg. Chim. Acta, 2018, 470, 407-415.
[27]
Turkyilmazoglu, M. Condensation of laminar film flow over curved vertical walls using single and two-phase nanofluid models. Eur. J. Mech. BFluids, 2017, 65, 184-191.
[28]
Turkyilmazoglu, M. Performance of direct absorption solar collector with nano fluid mixture. Energ Convers. Manage., 2016, 114, 1-10.
[29]
Turkyilmazoglu, M. Natural convective flow of nanofluids past a radiative and impulsive vertical plate. J. Aerosp. Eng., 2016, 29, 04016049.
[30]
Hagberg, D.P.; Marinado, T.; Karlsson, K.M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J. Org. Chem., 2007, 72, 9550-9556.
[31]
Geiger, T.; Kuster, S.; Yum, J.H.; Moon, S.J.; Nazeeruddin, M.K.; Grätzel, M.; Nüesch, F. Molecular design of unsymmetrical squaraine dyes for high efficiency conversion of low energy photons into electrons using TiO2 nanocrystalline films. Adv. Funct. Mater., 2009, 19, 2720-2727.
[32]
Choi, H.; Chen, W.T.; Kamat, P.V. Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano, 2012, 6, 4418-4427.
[33]
Pastore, M.; Fantacci, S.; Selloni, A.; De Angelis, F. In: Topics in Current Chemistry; Di Valentin, C.; Botti, S.; Cococcioni, M., Eds.; Springer: Berlin, Heidelberg, 2014; Vol. 347, pp. 1-45.
[34]
Dev, P.; Agrawal, S.; English, N.J. Functional assessment for predicting charge-transfer excitations of dyes in complexed state: A study of triphenylamine-donor dyes on titania for dye-sensitized solar cell. J. Phys. Chem. A, 2012, 117, 2114-2124.
[35]
Sarker, S.; Saleh Ahammad, A.J.; Seo, H.W.; Kim, D.M. Electrochemical impedance spectra of dye-sensitized solar cells: Fundamentals and spreadsheet calculation. Int. J. Photoen, 2014, 2014, 851705.
[36]
Fabregat-Santiago, F.; Garcia-Belmonte, G.; Mora-Serò, I.; Bisquert, J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys., 2011, 13, 9083-9118.