Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Transformed Double-Capped Gold Nanorods in Dye Co-Sensitized Solar Cells for Semitransparent Windows

Author(s): Marina Mazzoni*, Janardan Dagar, Sarah Lai, Sonia Centi, Fulvio Ratto, Roberto Pini and Lorenzo Zani

Volume 15, Issue 3, 2019

Page: [309 - 318] Pages: 10

DOI: 10.2174/1573413714666180719122657

Price: $65

Abstract

Background: Dye sensitized solar cells (DSSCs) containing two different dyes were recently used for applications to windows. To enhance the efficiency of this type of solar cells by means of the effect of localized surface plasmon resonance (LSPR), we produced gold nanorods (GNRs) with an aspect ratio (a.r.) equal to 3:1 and tos 4:1. With an actual window application in mind, and mainly to prevent corrosion by the redox mediator in the cell, we considered the capping of GNRs before introducing them into the titanium oxide (TiO2) layer of the anode. In particular, we made a double-capping with silica and titania layers for a limited total thickness (i.e., about 6 nm), while still allowing a significant localized LSPR effect despite the increased distance between gold and dye molecules. We documented the different transformations in dimensions of the two types of capped gold nanorods (c-GNRs) due to the effect of sintering. Our aim was to evaluate the influence that these transformations would have on the photovoltaic performances of DSSCs.

Methods: We added c-GNRs with a ratio of 2% in w/w to a transparent semiconductor paste, which was doctor bladed on the photoanodes of the co-sensitized solar cells made with commercially available organic sensitizers (L1 or L0) and the squaraine SQ2, which acted as a co-sensitizer. The films had a thickness of about 6 μm and were sintered at 450°C. We used transmission electron microscopy (TEM) analysis to document the transformations, absorbance and absorptance spectra in order to control the effects of these modifications, and transmittance spectra for evaluating the see-through effects. We performed current-voltage, external quantum efficiency (EQE%) and electrochemical impedance spectroscopy (EIS) characterizations of the DSSCs.

Results: The semiconductor films with c-GNRs that had GNRs with an a.r. equal to 4:1 (c-GNRs 4:1) had lower absorption and higher transmission as compared to those with GNRs a.r equal to 3:1 (c-GNRs 3:1). Only the c- GNRs 3:1, which retained a similar shape and an a.r. equal to 1.5 after sintering, produced an enhancement in the power conversion efficiency η% (23%), current Jsc (8%), and voltage Voc (2.5%) when used in combination with the dye cocktail containing the organic dye L1. On the contrary, the presence of c-GNRs 4:1 negatively influenced the photovoltaic performances of the cells containing this dye cocktail. The same occurred for both types of c-GNRs with the dye cocktail containing L0.

Conclusion: The use of c-GNRs 3:1 could actually improve the efficiency of co-sensitized DSSCs. On the other hand, the transformed dimensions of the c-GNRs 4:1 negatively influenced the photovoltaic characteristics when we used the same concentration of nanoparticles, and a semiconductor paste in small grains (i.e., about 20 nm). We attributed this fact both to a reduced penetration of the dyes in the films and to an inferior plasmonic effect.

Keywords: DSSC, co-sensitization, capped gold nanorods, transparent titania paste, absorbance, absorptance, transmittance, EQE%.

Graphical Abstract

[1]
Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye sensitized solar cells. Chem. Rev., 2010, 110, 6595-6663.
[2]
Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.I.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. (Camb.), 2010, 51, 15894-15897.
[3]
Kalyanasundaram, K. Dye-Sensitized Solar Cells; EPFL Press: Lausanne, 2010, pp. 295-296.
[4]
Ecóle Polytechnique Fédérale de Lausanne, Press Release. Available at:. https://actu.epfl.ch/news/epfl-s-campus-has-the-world-s-first-solar-window (Accessed on: March 15, 2018)
[5]
Yoon, S.; Tak, S.; Kim, J.; Jun, Y.; Kang, K.; Park, J. Application of transparent dye-sensitized solar cells to building integrated photovoltaic systems. Build. Environ., 2011, 46, 1899-1904.
[6]
Zhang, K.; Qin, C.; Yang, X.; Islam, A.; Zhang, S.; Chen, H.; Han, L. High-performance, transparent, dye-sensitized solar cells for see-through photovoltaic windows. Adv. Energy Mater., 2014, 4, 1301966.
[7]
Vos, J.J. Colorimetric and photometric properties of a 2° fundamental observer. Color Res. Appl., 1978, 3, 125-128.
[8]
Brown, M.D.; Suteewong, T.; Kumar, R.S.S.; D’Innocenzo, V.; Petrozza, A.; Lee, M.M.; Wiesner, U.; Snaith, H.J. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett., 2011, 11, 438-445.
[9]
Li, H.; Hong, W.; Cai, F.; Tang, Q.; Yan, Y.; Hu, X.; Zhao, B.; Zhang, D.; Xu, Z. Au@SiO2 nanoparticles coupling co-sensitizers for synergic efficiency enhancement of dye sensitized solar cells. J. Mater. Chem., 2012, 22, 24734-24743.
[10]
Xu, X.; Du, Q.; Peng, B.; Xiong, Q.; Hong, L.; Hilmi Volkan, D.; Wong, T.K.S.; Kyaw, A.K.K.; Sun, X.W. Effect of shell thickness on small-molecule solar cell enhanced by dual plasmonic gold-silica nanorods. Appl. Phys. Lett., 2014, 105, 113306.
[11]
Codrin, A.; Lestini, E.; Crosbie, S.; De Frein, C.; O’Really, T.; Zerulla, D. Plasmonic enhancement of dye sensitized solar cells via a tailored size-distribution of chemically funzionalized gold nanoparticles. PLoS One, 2014, 9, e109836.
[12]
Sheehan, S.W.; Noh, H.; Brudvig, G.W.; Cao, H.; Schmuttenmaer, C.A. Plasmonic enhancement of dye-sensitized solar cells using core−shell−shell nanostructures. J. Phys. Chem. C, 2013, 117, 927-934.
[13]
Gangishetty, M.K.; Scott, R.W.J.; Kelly, T.L. Panchromatic enhancement of light-harvesting efficiency in dye-sensitized solar cells using thermally annealed Au@SiO2 triangular nanoprism. Langmuir, 2014, 30(47), 14352-14359.
[14]
Liu, W.L.; Lin, F.C.; Yang, Y.C.; Huang, C.H.; Guo, S.; Huang, M.H.; Huang, J.S. The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale, 2013, 5, 7953-7962.
[15]
Meen, T.H.; Tsai, J.K.; Chao, S.M.; Lin, Y.C.; Wu, T.C.; Chang, T.Y.; Ji, L.W.; Water, W.; Chen, W.R.; Tang, I.T.; Huang, C.Y. Surface plasma resonant effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. Nanoscale Res. Lett., 2013, 8, 450.
[16]
Chandrasekhar, P.S.; Parashar, P.K.; Swami, S.K.; Dutta, V.; Komarata, V.K. Enhancement of Y123 dye-sensitized solar cell performance using plasmonic gold nanorods. Phys. Chem. Chem. Phys., 2018, 20, 9651-9658.
[17]
Bai, L.; Li, M.; Guo, K.; Luoshan, M.; Mehnane, H.F.; Pei, L.; Pan, M.; Liao, L.; Zhao, X. Plasmonic enhancement of the performance of dye-sensitized solar cell by core-shell AuNRs@SiO2 in composite photoanode. J. Power Sources, 2014, 272, 1100-1105.
[18]
Chang, J.; Lee, C.P.; Kumar, D.; Chen, P.W.; Lin, L.Y.; Thomas, K.R.J.; Ho, K.C. Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel pyrenoimidazole-based dye. J. Power Sources, 2013, 240, 779-785.
[19]
Lin, L.Y.; Yeh, M.H.; Lee, C.P.; Chang, J.; Baheti, A.; Vittal, R.; Thomas, K.R.J.; Ho, K.C. Insights into the co-sensitizer adsorption kinetics for complementary organic dye-sensitized solar cells. J. Power Sources, 2014, 247, 906-914.
[20]
Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B, 2006, 110, 7238-7248.
[21]
Wadams, R.C.; Yen, C.; Butcher, D.; Koerner, H.; Durstock, M.F.; Fabris, L.; Tabor, C.E. Gold nanorod enhanced organic photovoltaics: The importance of morphology effects. Org. Electron., 2014, 15, 1448-1457.
[22]
Chen, S.F.; Cheng, F.; Mei, Y.; Peng, B.; Kong, M.J.; Hao, Y.; Zhang, R.; Zhang, Q.H.; Xiong, Q.H.; Wang, L.H.; Huang, W. Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism. Appl. Phys. Lett., 2014, 104, 213903.
[23]
Jankovic, V.; Yang, Y.M.; You, J.; Dou, L.; Liu, Y.; Cheung, P.; Chang, J.P.; Yang, Y. Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS Nano, 2013, 7, 3815-3822.
[24]
Eperon, G.E.; Burkakov, V.M.; Goriely, A.; Snaith, H.J. Neutral color semitrasparent microstructured perovskite solar cells. ACS Nano, 2014, 8, 591-598.
[25]
Joy, N.A.; Janiszewski, B.K.; Novak, S.; Johnson, T.W.; Oh, S.H.; Raghunathan, A.; Hartley, J.; Carpenter, M.A. Thermal stability of gold nanorods for high temperature plasmonic sensing. J. Phys. Chem. C, 2013, 117, 11718-11724.
[26]
Zani, L.; Dagar, J.; Lai, S.; Centi, S.; Ratto, F.; Pini, R.; Calamante, M.; Mordini, A.; Reginato, G.; Mazzoni, M. Studies on the efficiency enhancement of co-sensitized, transparent DSSCs by employment of core-shell-shell gold nanorod. Inorg. Chim. Acta, 2018, 470, 407-415.
[27]
Turkyilmazoglu, M. Condensation of laminar film flow over curved vertical walls using single and two-phase nanofluid models. Eur. J. Mech. BFluids, 2017, 65, 184-191.
[28]
Turkyilmazoglu, M. Performance of direct absorption solar collector with nano fluid mixture. Energ Convers. Manage., 2016, 114, 1-10.
[29]
Turkyilmazoglu, M. Natural convective flow of nanofluids past a radiative and impulsive vertical plate. J. Aerosp. Eng., 2016, 29, 04016049.
[30]
Hagberg, D.P.; Marinado, T.; Karlsson, K.M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J. Org. Chem., 2007, 72, 9550-9556.
[31]
Geiger, T.; Kuster, S.; Yum, J.H.; Moon, S.J.; Nazeeruddin, M.K.; Grätzel, M.; Nüesch, F. Molecular design of unsymmetrical squaraine dyes for high efficiency conversion of low energy photons into electrons using TiO2 nanocrystalline films. Adv. Funct. Mater., 2009, 19, 2720-2727.
[32]
Choi, H.; Chen, W.T.; Kamat, P.V. Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano, 2012, 6, 4418-4427.
[33]
Pastore, M.; Fantacci, S.; Selloni, A.; De Angelis, F. In: Topics in Current Chemistry; Di Valentin, C.; Botti, S.; Cococcioni, M., Eds.; Springer: Berlin, Heidelberg, 2014; Vol. 347, pp. 1-45.
[34]
Dev, P.; Agrawal, S.; English, N.J. Functional assessment for predicting charge-transfer excitations of dyes in complexed state: A study of triphenylamine-donor dyes on titania for dye-sensitized solar cell. J. Phys. Chem. A, 2012, 117, 2114-2124.
[35]
Sarker, S.; Saleh Ahammad, A.J.; Seo, H.W.; Kim, D.M. Electrochemical impedance spectra of dye-sensitized solar cells: Fundamentals and spreadsheet calculation. Int. J. Photoen, 2014, 2014, 851705.
[36]
Fabregat-Santiago, F.; Garcia-Belmonte, G.; Mora-Serò, I.; Bisquert, J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys., 2011, 13, 9083-9118.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy