Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Diagnostic Capabilities of MRI Versus 18F FDG PET-CT in Postoperative Patients with Thyroglobulin Positive, 131I-negative Local Recurrent or Metastatic Thyroid Cancer

Author(s): Cesur Samanci*, Yilmaz Onal , Sait Sager, Sertac Asa, Fethi Emre Ustabasioglu, Deniz Alis, Canan Akman and Kerim Sonmezoglu

Volume 15, Issue 10, 2019

Page: [956 - 964] Pages: 9

DOI: 10.2174/1573405614666180718124739

Price: $65

Abstract

Background: The detection of recurrence or metastasis might be challenging in patients, who underwent total thyroidectomy and radioactive iodine therapy for Differentiated Thyroid Carcinoma (DTC), with increased serum Thyroglobulin (Tg) levels and negative 131I whole body scan (131I-WBS) results.

Aims: The purpose of this study was to compare the ability of Magnetic Resonance Imaging (MRI) and 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (18F FDG PET-CT) to detect recurrence or cervical and upper mediastinal metastases in postoperative DTC patients who had negative 131I-WBS despite elevated serum Tg levels.

Study Design: This study has a retrospective study design.

Methods: We evaluated cervical and upper mediastinal MRI and 18F FDG PET-CT of 32 postoperative patients with DTC (26 patients with papillary thyroid carcinoma and 6 patients with follicular thyroid carcinoma).

Results: We evaluated 44 lesions in 32 patients. For all lesions, the Positive Predictive Value, (PPV) Negative Predictive Value (NPV), sensitivity, specificity, and accuracy of MRI were 81.4%, 76.4%, 84.6%, 72.2%, and 79.5% respectively. The PPV, NPV, sensitivity, specificity, and accuracy of 18F FDG PET-CT were 100.0%, 85.7%, 88.4%, 100.0%, and 93.1%, respectively.

Conclusion: Although we could not replace 18F FDG PET-CT, MRI might be used as an adjunct to 18F FDG PET-CT for the evaluation of recurrent or cervical and upper mediastinal metastatic thyroid cancers; however, MRI is inadequate for the detection of metastases in small lymph nodes.

Keywords: Magnetic resonance imaging, 18F-fluorodeoxyglucose positron emission tomography, thyroid cancer, metastasis, positive predictive value, sensitivity.

Graphical Abstract

[1]
Woolner LB, Beahrs OH, Black BM, McConahey WM, Keating FR Jr. Classification and prognosis of thyroid carcinoma. A study of 885 cases observed in a thirty year period. Am J Surg 1961; 102: 354-87.
[http://dx.doi.org/10.1016/0002-9610(61)90527-X] [PMID: 13786653]
[2]
Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19(11): 1167-214.
[http://dx.doi.org/10.1089/thy.2009.0110] [PMID: 19860577]
[3]
Hundahl SA, Fleming ID, Fremgen AM, Menck HR. a national cancer data base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985-1995. Cancer 1998; 83(12): 2638-48.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19981215)83:12<2638:AID-CNCR31>3.0.CO;2-1] [PMID: 9874472]
[4]
Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 2006; 295(18): 2164-7.
[http://dx.doi.org/10.1001/jama.295.18.2164] [PMID: 16684987]
[5]
Hoang JK, Lee WK, Lee M, Johnson D, Farrell SUS. Features of thyroid malignancy: pearls and pitfalls. Radiographics 2007; 27(3): 847-60.
[http://dx.doi.org/10.1148/rg.273065038] [PMID: 17495296]
[6]
Mazzaferri EL, Young RL. Papillary thyroid carcinoma: a 10 year follow-up report of the impact of therapy in 576 patients. Am J Med 1981; 70(3): 511-8.
[http://dx.doi.org/10.1016/0002-9343(81)90573-8] [PMID: 7211893]
[7]
Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60(5): 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[8]
Yoshio K, Sato S, Okumura Y, et al. The local efficacy of I-131 for F-18 FDG PET positive lesions in patients with recurrent or metastatic thyroid carcinomas. Clin Nucl Med 2011; 36(2): 113-7.
[http://dx.doi.org/10.1097/RLU.0b013e318203bb6c] [PMID: 21220972]
[9]
Pineda JD, Lee T, Ain K, Reynolds JC, Robbins J. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab 1995; 80(5): 1488-92.
[PMID: 7744991]
[10]
Lind P, Kohlfürst S. Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in the assessment of thyroid cancer. Semin Nucl Med 2006; 36(3): 194-205.
[http://dx.doi.org/10.1053/j.semnuclmed.2006.03.002] [PMID: 16762610]
[11]
Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008; 49(3): 480-508.
[http://dx.doi.org/10.2967/jnumed.107.047787] [PMID: 18287273]
[12]
Gallowitsch HJ, Mikosch P, Kresnik E, Unterweger O, Gomez I, Lind P. Thyroglobulin and low-dose iodine-131 and technetium-99m-tetrofosmin whole-body scintigraphy in differentiated thyroid carcinoma. J Nucl Med 1998; 39(5): 870-5.
[PMID: 9591591]
[13]
Bertagna F, Biasiotto G, Orlando E, Bosio G, Giubbini R. Role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients affected by differentiated thyroid carcinoma, high thyroglobulin level, and negative 131I scan: review of the literature. Jpn J Radiol 2010; 28(9): 629-36.
[http://dx.doi.org/10.1007/s11604-010-0488-z] [PMID: 21113746]
[14]
Grünwald F, Kälicke T, Feine U, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999; 26(12): 1547-52.
[http://dx.doi.org/10.1007/s002590050493] [PMID: 10638405]
[15]
Toubert ME, Cyna-Gorse F, Zagdanski AM, et al. Cervicomediastinal magnetic resonance imaging in persistent or recurrent papillary thyroid carcinoma: clinical use and limits. Thyroid 1999; 9(6): 591-7.
[http://dx.doi.org/10.1089/thy.1999.9.591] [PMID: 10411122]
[16]
Schwartz LH, Bogaerts J, Ford R, et al. Evaluation of lymph nodes with RECIST 1.1. Eur J Cancer 2009; 45(2): 261-7.
[http://dx.doi.org/10.1016/j.ejca.2008.10.028] [PMID: 19091550]
[17]
Altekruse SF, Kosary CL, Krapcho M, et al. SEER cancer statistics review, 1975-2007. National Cancer Institute Bethesda, MD 2010.
[18]
Schlüter B, Bohuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med 2001; 42(1): 71-6.
[PMID: 11197983]
[19]
Alnafisi NS, Driedger AA, Coates G, Moote DJ, Raphael SJ. FDG PET of recurrent or metastatic 131I-negative papillary thyroid carcinoma. J Nucl Med 2000; 41(6): 1010-5.
[PMID: 10855626]
[20]
Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997; 24(11): 1342-8.
[http://dx.doi.org/10.1007/s002590050158] [PMID: 9371865]
[21]
Feine U, Lietzenmayer R, Hanke JP, Held J, Wöhrle H, Müller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996; 37(9): 1468-72.
[PMID: 8790195]
[22]
Zimmer LA, McCook B, Meltzer C, et al. Combined positron emission tomography/computed tomography imaging of recurrent thyroid cancer. Otolaryngol Head Neck Surg 2003; 128(2): 178-84.
[http://dx.doi.org/10.1067/mhn.2003.74] [PMID: 12601311]
[23]
Jabour BA, Choi Y, Hoh CK, et al. Extracranial head and neck: PET imaging with 2-[F-18]fluoro-2-deoxy-D-glucose and MR imaging correlation. Radiology 1993; 186(1): 27-35.
[http://dx.doi.org/10.1148/radiology.186.1.8416578] [PMID: 8416578]
[24]
Menéndez TE, López CMT, Rodríguez ERM, Forga LL, Goñi IMJ, Barbería LJJ. Prognostic value of thyroglobulin serum levels and 131I whole-body scan after initial treatment of low-risk differentiated thyroid cancer. Thyroid 2004; 14(4): 301-6.
[http://dx.doi.org/10.1089/105072504323030960] [PMID: 15142364]
[25]
Sundram F. Clinical use of PET/CT in thyroid cancer diagnosis and management. Biomed Imaging Interv J 2006; 2(4)e56
[http://dx.doi.org/10.2349/biij.2.4.e56] [PMID: 21614336]
[26]
Auffermann W, Clark OH, Thurnher S, Galante M, Higgins CB. Recurrent thyroid carcinoma: characteristics on MR images. Radiology 1988; 168(3): 753-7.
[http://dx.doi.org/10.1148/radiology.168.3.3406405] [PMID: 3406405]
[27]
Mihailovic J, Prvulovic M, Ivkovic M, Markoski B, Martinov D. MRI versus 131I whole-body scintigraphy for the detection of lymph node recurrences in differentiated thyroid carcinoma. AJR Am J Roentgenol 2010; 195(5): 1197-203.
[http://dx.doi.org/10.2214/AJR.09.4172] [PMID: 20966328]
[28]
Kaplan SL, Mandel SJ, Muller R, Baloch ZW, Thaler ER, Loevner LA. The role of MR imaging in detecting nodal disease in thyroidectomy patients with rising thyroglobulin levels. AJNR Am J Neuroradiol 2009; 30(3): 608-12.
[http://dx.doi.org/10.3174/ajnr.A1405] [PMID: 19039052]
[29]
Ohnishi T, Noguchi S, Murakami N, et al. Detection of recurrent thyroid cancer: MR versus thallium-201 scintigraphy. AJNR Am J Neuroradiol 1993; 14(5): 1051-7.
[PMID: 8237680]
[30]
Semiz Oysu A, Ayanoglu E, Kodalli N, Oysu C, Uneri C, Erzen C. Dynamic contrast-enhanced MRI in the differentiation of posttreatment fibrosis from recurrent carcinoma of the head and neck. Clin Imaging 2005; 29(5): 307-12.
[http://dx.doi.org/10.1016/j.clinimag.2005.01.024] [PMID: 16153535]
[31]
Dao TH, Rahmouni A, Campana F, Laurent M, Asselain B, Fourquet A. Tumor recurrence versus fibrosis in the irradiated breast: differentiation with dynamic gadolinium-enhanced MR imaging. Radiology 1993; 187(3): 751-5.
[http://dx.doi.org/10.1148/radiology.187.3.8497625] [PMID: 8497625]
[32]
Hawnaur JM, Zhu XP, Hutchinson CE. Quantitative dynamic contrast enhanced MRI of recurrent pelvic masses in patients treated for cancer. Br J Radiol 1998; 71(851): 1136-42.
[http://dx.doi.org/10.1259/bjr.71.851.10434907] [PMID: 10434907]
[33]
Kinkel K, Tardivon AA, Soyer P, et al. Dynamic contrast-enhanced subtraction versus T2-weighted spin-echo MR imaging in the follow-up of colorectal neoplasm: a prospective study of 41 patients. Radiology 1996; 200(2): 453-8.
[http://dx.doi.org/10.1148/radiology.200.2.8685341] [PMID: 8685341]
[34]
Kinkel K, Ariche M, Tardivon AA, et al. Differentiation between recurrent tumor and benign conditions after treatment of gynecologic pelvic carcinoma: value of dynamic contrast-enhanced subtraction MR imaging. Radiology 1997; 204(1): 55-63.
[http://dx.doi.org/10.1148/radiology.204.1.9205223] [PMID: 9205223]
[35]
Müller-Schimpfle M, Brix G, Layer G, et al. Recurrent rectal cancer: diagnosis with dynamic MR imaging. Radiology 1993; 189(3): 881-9.
[http://dx.doi.org/10.1148/radiology.189.3.8234720] [PMID: 8234720]
[36]
Hawighorst H, Knapstein PG, Schaeffer U, et al. Pelvic lesions in patients with treated cervical carcinoma: efficacy of pharmacokinetic analysis of dynamic MR images in distinguishing recurrent tumors from benign conditions. AJR Am J Roentgenol 1996; 166(2): 401-8.
[http://dx.doi.org/10.2214/ajr.166.2.8553955] [PMID: 8553955]
[37]
Thoeny HC, De Keyzer F, King AD. Diffusion-weighted MR imaging in the head and neck. Radiology 2012; 263(1): 19-32.
[http://dx.doi.org/10.1148/radiol.11101821] [PMID: 22438440]
[38]
Abdel Razek AA, Kandeel AY, Soliman N, et al. Role of diffusion-weighted echo-planar MR imaging in differentiation of residual or recurrent head and neck tumors and posttreatment changes. AJNR Am J Neuroradiol 2007; 28(6): 1146-52.
[http://dx.doi.org/10.3174/ajnr.A0491] [PMID: 17569975]
[39]
Vandecaveye V, De Keyzer F, Nuyts S, et al. Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 2007; 67(4): 960-71.
[http://dx.doi.org/10.1016/j.ijrobp.2006.09.020] [PMID: 17141979]
[40]
Wu HS, Huang WS, Liu YC, Yen RF, Shen YY, Kao CH. Comparison of FDG-PET and technetium-99m MIBI SPECT to detect metastatic cervical lymph nodes in well-differentiated thyroid carcinoma with elevated serum HTG but negative I-131 whole body scan. Anticancer Res 2003; 23(5b): 4235-8.
[PMID: 14666632]
[41]
Erdi YE, Nehmeh SA, Pan T, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. JNMT 2004; 45: 1287-92.
[42]
Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008; 38(3): 167-76.
[http://dx.doi.org/10.1053/j.semnuclmed.2008.01.002] [PMID: 18396177]
[43]
Guerra L, Meregalli S, Zorz A, et al. Comparative evaluation of CT-based and respiratory-gated PET/CT-based Planning Target Volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results. Eur J Nucl Med Mol Imaging 2014; 41(4): 702-10.
[http://dx.doi.org/10.1007/s00259-013-2594-5] [PMID: 24177810]
[44]
Yamashita S, Yokoyama K, Onoguchi M, et al. Feasibility of deep-inspiration breath-hold PET/CT with short-time acquisition: detectability for pulmonary lesions compared with respiratory-gated PET/CT. Ann Nucl Med 2014; 28(1): 1-10.
[http://dx.doi.org/10.1007/s12149-013-0774-9] [PMID: 24151087]
[45]
Platzek I, Beuthien-Baumann B, Schneider M, et al. PET/MRI in head and neck cancer: initial experience. Eur J Nucl Med Mol Imaging 2013; 40(1): 6-11.
[http://dx.doi.org/10.1007/s00259-012-2248-z] [PMID: 23053322]
[46]
Bhargava P, Rahman S, Wendt J. Atlas of confounding factors in head and neck PET/CT imaging. Clin Nucl Med 2011; 36(5): e20-9.
[http://dx.doi.org/10.1097/RLU.0b013e318212c872] [PMID: 21467845]
[47]
Gross ND, Weissman JL, Talbot JM, Andersen PE, Wax MK, Cohen JI. MRI detection of cervical metastasis from differentiated thyroid carcinoma. Laryngoscope 2001; 111(11 Pt 1): 1905-9.
[http://dx.doi.org/10.1097/00005537-200111000-00006] [PMID: 11801967]
[48]
Nagarajah J, Jentzen W, Hartung V, et al. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs. PET/CT of the neck. Eur J Nucl Med Mol Imaging 2011; 38(10): 1862-8.
[http://dx.doi.org/10.1007/s00259-011-1866-1] [PMID: 21739331]
[49]
Hempel JM, Kloeckner R, Krick S, et al. Impact of combined FDG-PET/CT and MRI on the detection of local recurrence and nodal metastases in thyroid cancer. Cancer Imaging 2016; 16(1): 37.
[http://dx.doi.org/10.1186/s40644-016-0096-y] [PMID: 27809936]
[50]
Dammann F, Bootz F, Cohnen M, Hassfeld S, Tatagiba M, Kösling S. Diagnostic imaging modalities in head and neck disease. Dtsch Arztebl Int 2014; 111(23-24): 417-23.
[http://dx.doi.org/10.3238/arztebl.2014.0417] [PMID: 24980674]
[51]
Miyakoshi A, Dalley RW, Anzai Y. Magnetic resonance imaging of thyroid cancer. Top Magn Reson Imaging 2007; 18(4): 293-302.
[http://dx.doi.org/10.1097/RMR.0b013e318572b76] [PMID: 17893594]
[52]
Hoang JK, Vanka J, Ludwig BJ, Glastonbury CM. Evaluation of cervical lymph nodes in head and neck cancer with CT and MRI: tips, traps, and a systematic approach. AJR Am J Roentgenol 2013; 200(1)W17-25
[http://dx.doi.org/10.2214/AJR.12.8960] [PMID: 23255768]
[53]
Som PM, Curtin HD, Mancuso AA. Imaging-based nodal classification for evaluation of neck metastatic adenopathy. AJR Am J Roentgenol 2000; 174(3): 837-44.
[http://dx.doi.org/10.2214/ajr.174.3.1740837] [PMID: 10701636]
[54]
Takashima S, Sone S, Takayama F, et al. Papillary thyroid carcinoma: MR diagnosis of lymph node metastasis. AJNR Am J Neuroradiol 1998; 19(3): 509-13.
[PMID: 9541309]
[55]
Machens A, Holzhausen HJ, Dralle H. Skip metastases in thyroid cancer leaping the central lymph node compartment. Arch Surg 2004; 139(1): 43-5.
[http://dx.doi.org/10.1001/archsurg.139.1.43] [PMID: 14718274]
[56]
Takashima S, Takayama F, Wang J, Kobayashi S, Kadoya M. Using MR imaging to predict invasion of the recurrent laryngeal nerve by thyroid carcinoma. AJR Am J Roentgenol 2003; 180(3): 837-42.
[http://dx.doi.org/10.2214/ajr.180.3.1800837] [PMID: 12591706]
[57]
Edge SB. American Joint Committee on Cancer AJCC cancer staging manual. 7th ed. New York: Springer 2010.
[58]
Wang JC, Takashima S, Takayama F, et al. Tracheal invasion by thyroid carcinoma: prediction using MR imaging. AJR Am J Roentgenol 2001; 177(4): 929-36.
[http://dx.doi.org/10.2214/ajr.177.4.1770929] [PMID: 11566708]
[59]
Wang J, Takashima S, Matsushita T, Takayama F, Kobayashi T, Kadoya M. Esophageal invasion by thyroid carcinomas: prediction using magnetic resonance imaging. J Comput Assist Tomogr 2003; 27(1): 18-25.
[http://dx.doi.org/10.1097/00004728-200301000-00004] [PMID: 12544237]
[60]
Seo YL, Yoon DY, Lim KJ, et al. Locally advanced thyroid cancer: can CT help in prediction of extrathyroidal invasion to adjacent structures? AJR Am J Roentgenol 2010; 195(3)W240-4
[http://dx.doi.org/10.2214/AJR.09.3965] [PMID: 20729422]
[61]
Roychowdhury S, Loevner LA, Yousem DM, Chalian A, Montone KT. MR imaging for predicting neoplastic invasion of the cervical esophagus. AJNR Am J Neuroradiol 2000; 21(9): 1681-7.
[PMID: 11039351]
[62]
Nam IC, Park JO, Joo YH, Cho KJ, Kim MS. Pattern and predictive factors of regional lymph node metastasis in papillary thyroid carcinoma: a prospective study. Head Neck 2013; 35(1): 40-5.
[http://dx.doi.org/10.1002/hed.22903] [PMID: 22266805]
[63]
Isaacs JD, McMullen TP, Sidhu SB, Sywak MS, Robinson BG, Delbridge LW. Predictive value of the Delphian and level VI nodes in papillary thyroid cancer. ANZ J Surg 2010; 80(11): 834-8.
[http://dx.doi.org/10.1111/j.1445-2197.2010.05334.x] [PMID: 20969694]
[64]
Choi JY, Choi YS, Park YH, Kim JH. Experience and analysis of level VII cervical lymph node metastases in patients with papillary thyroid carcinoma. J Korean Surg Soc 2011; 80(5): 307-12.
[http://dx.doi.org/10.4174/jkss.2011.80.5.307] [PMID: 22066053]
[65]
Vandecaveye V, De Keyzer F, Dirix P, Lambrecht M, Nuyts S, Hermans R. Applications of diffusion-weighted magnetic resonance imaging in head and neck squamous cell carcinoma. Neuroradiology 2010; 52(9): 773-84.
[http://dx.doi.org/10.1007/s00234-010-0743-0] [PMID: 20631998]
[66]
Kwee TC, Takahara T, Ochiai R, et al. Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med 2010; 51(10): 1549-58.
[http://dx.doi.org/10.2967/jnumed.109.073908] [PMID: 20847177]
[67]
King AD, Chow KK, Yu KH, et al. Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2013; 266(2): 531-8.
[http://dx.doi.org/10.1148/radiol.12120167] [PMID: 23151830]
[68]
Varoquaux A, Rager O, Lovblad KO, et al. Functional imaging of head and neck squamous cell carcinoma with diffusion-weighted MRI and FDG PET/CT: quantitative analysis of ADC and SUV. Eur J Nucl Med Mol Imaging 2013; 40(6): 842-52.
[http://dx.doi.org/10.1007/s00259-013-2351-9] [PMID: 23436068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy