Review Article

槲皮素及其在伤口愈合管理中的天然来源

卷 26, 期 31, 2019

页: [5825 - 5848] 页: 24

弟呕挨: 10.2174/0929867325666180713150626

价格: $65

摘要

纵观2017年按产品划分的伤口护理市场报告,我们可以看到,到2022年,伤口护理市场预计将从183.5亿美元增长到220.1亿美元,复合年增长率为3.7%。许多因素正在推动该市场的增长,包括慢性伤口和急性伤口的患病率增加,老年人口的增加,研发活动的增加以及伤口护理研究领域的发展。先进的伤口处理产品在2017年占据最大市场份额。这些证据表明,伤口护理研究代表了临床急诊,而不是有趣的营销工具。迄今为止,药物治疗有效地与源自慢性伤口的机会性疾病作斗争,尽管尚未解决的挑战仍在寻找一种有用的疗法来纠正受损的伤口愈合过程并克服慢性伤口状态,从而避免细菌上升和严重疼痛。传统的药用植物已被广泛用于伤口的处理,并且通过体外和体内研究对不同的植物提取物的伤口愈合特性进行了评估。它们的植物化学成分,尤其是槲皮素,有助于其在伤口修复中的修复特性。槲皮素具有与改善伤口愈合过程相关的重要生物学活性。本综述讨论并集中于槲皮素单独或作为植物提取物的一部分的伤口愈合特性的最新发现,以及其在伤口修复中的新领域的作用。

关键词: 伤口愈合,槲皮素,天然植物提取物,槲皮素载剂,伤口护理研究,细菌生长,药用植物。

[1]
Eming, S.A.; Tomic-Canic, M. Updates in wound healing: Mechanisms and translation. Exp. Dermatol., 2017, 26(2), 97-98.
[http://dx.doi.org/10.1111/exd.13281] [PMID: 28133858]
[2]
Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res., 2009, 37(5), 1528-1542.
[http://dx.doi.org/10.1177/147323000903700531] [PMID: 19930861]
[3]
Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery, 2005, 23(2), 37-42.
[4]
Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med., 1999, 341(10), 738-746.
[http://dx.doi.org/10.1056/NEJM199909023411006] [PMID: 10471461]
[5]
Kondo, T.; Ishida, Y. Molecular pathology of wound healing. Forensic Sci. Int., 2010, 203(1-3), 93-98.
[http://dx.doi.org/10.1016/j.forsciint.2010.07.004] [PMID: 20739128]
[6]
Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res., 2010, 89(3), 219-229.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[7]
Zielins, E.R.; Brett, E.A.; Luan, A.; Hu, M.S.; Walmsley, G.G.; Paik, K.; Senarath-Yapa, K.; Atashroo, D.A.; Wearda, T.; Lorenz, H.P.; Wan, D.C.; Longaker, M.T. Emerging drugs for the treatment of wound healing. Expert Opin. Emerg. Drugs, 2015, 20(2), 235-246.
[http://dx.doi.org/10.1517/14728214.2015.1018176] [PMID: 25704608]
[8]
Baltzis, D.; Eleftheriadou, I.; Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv. Ther., 2014, 31(8), 817-836.
[http://dx.doi.org/10.1007/s12325-014-0140-x] [PMID: 25069580]
[9]
Loots, M.A.; Lamme, E.N.; Zeegelaar, J.; Mekkes, J.R.; Bos, J.D.; Middelkoop, E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J. Invest. Dermatol., 1998, 111(5), 850-857.
[http://dx.doi.org/10.1046/j.1523-1747.1998.00381.x] [PMID: 9804349]
[10]
Boateng, J.; Catanzano, O. Advanced Therapeutic Dressings for Effective Wound Healing--A Review. J. Pharm. Sci., 2015, 104(11), 3653-3680.
[http://dx.doi.org/10.1002/jps.24610] [PMID: 26308473]
[11]
Enoch, S.; Grey, J.E.; Harding, K.G. ABC of wound healing. Non-surgical and drug treatments. BMJ, 2006, 332(7546), 900-903.
[http://dx.doi.org/10.1136/bmj.332.7546.900] [PMID: 16613966]
[12]
Duscher, D.; Barrera, J.; Wong, V.W.; Maan, Z.N.; Whittam, A.J.; Januszyk, M.; Gurtner, G.C. Stem cells in wound healing: the future of regenerative medicine? a mini-review. Gerontology, 2016, 62(2), 216-225.
[http://dx.doi.org/10.1159/000381877] [PMID: 26045256]
[13]
Braund, R.; Hook, S.M.; Greenhill, N.; Medlicott, N.J. Distribution of fibroblast growth factor-2 (FGF-2) within model excisional wounds following topical application. J. Pharm. Pharmacol., 2009, 61(2), 193-200.
[http://dx.doi.org/10.1211/jpp.61.02.0008] [PMID: 19178766]
[14]
Sosa, I.J.; Reyes, O.; Kuffler, D.P. Elimination of a pressure ulcer with electrical stimulation--a case study. P. R. Health Sci. J., 2008, 27(2), 175-179.
[PMID: 18616047]
[15]
Hodde, J. Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J. Surg., 2006, 76(12), 1096-1100.
[http://dx.doi.org/10.1111/j.1445-2197.2006.03948.x] [PMID: 17199697]
[16]
Ramelet, A.A.; Hirt-Burri, N.; Raffoul, W.; Scaletta, C.; Pioletti, D.P.; Offord, E.; Mansourian, R.; Applegate, L.A. Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp. Gerontol., 2009, 44(3), 208-218.
[http://dx.doi.org/10.1016/j.exger.2008.11.004] [PMID: 19049860]
[17]
Mogoşanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm., 2014, 463(2), 127-136.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.015] [PMID: 24368109]
[18]
Pazyar, N.; Yaghoobi, R.; Rafiee, E.; Mehrabian, A.; Feily, A. Skin wound healing and phytomedicine: a review. Skin Pharmacol. Physiol., 2014, 27(6), 303-310.
[http://dx.doi.org/10.1159/000357477] [PMID: 24993834]
[19]
Bahramsoltani, R.; Farzaei, M.H.; Rahimi, R. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch. Dermatol. Res., 2014, 306(7), 601-617.
[http://dx.doi.org/10.1007/s00403-014-1474-6] [PMID: 24895176]
[20]
Aiello, F.; Armentano, B.; Polerà, N.; Carullo, G.; Loizzo, M.R.; Bonesi, M.; Cappello, M.S.; Capobianco, L.; Tundis, R. From vegetable waste to nnew agents for potential health applications: antioxidant properties and effects of extracts, fractions and pinocembrin from glycyrrhiza glabra L. aerial parts on viability of five human cancer lines. J. Agric. Food Chem., 2017, 65(36), 7944-7954.
[http://dx.doi.org/10.1021/acs.jafc.7b03045] [PMID: 28862446]
[21]
Tundis, R.; Frattaruolo, L.; Carullo, G.; Armentano, B.; Badolato, M.; Loizzo, M.R.; Aiello, F.; Cappello, A.R. An ancient remedial repurposing: synthesis of fatty acid acyl derivatives of pinocembrin as potential antimicrobial/antiinflammatory agents. Nat. Prod. Res., 2019, 33(2), 1162-1168.
[http://dx.doi.org/10.1080/14786419.2018.1440224] [PMID: 29463111]
[22]
Badolato, M.; Carullo, G.; Cione, E.; Aiello, F.; Caroleo, M.C. From the hive: Honey, a novel weapon against cancer. Eur. J. Med. Chem., 2017, 142, 290-299.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.064] [PMID: 28797675]
[23]
Carullo, G.; Durante, M.; Sciubba, F.; Restuccia, D.; Spizzirri, U.G.; Ahmed, A.; Di Cocco, M.E.; Saponara, S.; Aiello, F.; Fusi, F. Vasoactivity of Mantonico and Pecorello grape pomaces on rat aorta rings: An insight into nutraceutical development. J. Funct. Foods, 2019, 57, 328-334.
[http://dx.doi.org/10.1016/j.jff.2019.04.023]
[24]
Governa, P.; Carullo, G.; Biagi, M.; Rago, V.; Aiello, F. Evaluation of the in vitro wound-healing activity of calabrian honeys. Antioxidants, 2019, 8(2), 36.
[http://dx.doi.org/10.3390/antiox8020036] [PMID: 30736314]
[25]
Das, U.; Behera, S.S.; Pramanik, K. Ethno-herbal-medico in wound repair: an incisive review. Phytother. Res., 2017, 31(4), 579-590.
[http://dx.doi.org/10.1002/ptr.5786] [PMID: 28198058]
[26]
Kumar, B.; Vijayakumar, M.; Govindarajan, R.; Pushpangadan, P. Ethnopharmacological approaches to wound healing--exploring medicinal plants of India. J. Ethnopharmacol., 2007, 114(2), 103-113.
[http://dx.doi.org/10.1016/j.jep.2007.08.010] [PMID: 17884316]
[27]
Agyare, C.; Asase, A.; Lechtenberg, M.; Niehues, M.; Deters, A.; Hensel, A. An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana. J. Ethnopharmacol., 2009, 125(3), 393-403.
[http://dx.doi.org/10.1016/j.jep.2009.07.024] [PMID: 19635544]
[28]
Ruszymah, B.H.; Chowdhury, S.R.; Manan, N.A.B.A.; Fong, O.S.; Adenan, M.I.; Saim, A.B. Aqueous extract of Centella asiatica promotes corneal epithelium wound healing in vitro. J. Ethnopharmacol., 2012, 140(2), 333-338.
[http://dx.doi.org/10.1016/j.jep.2012.01.023] [PMID: 22301444]
[29]
Somboonwong, J.; Kankaisre, M.; Tantisira, B.; Tantisira, M.H. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC Complement. Altern. Med., 2012, 12, 103.
[http://dx.doi.org/10.1186/1472-6882-12-103] [PMID: 22817824]
[30]
Ponrasu, T.; Suguna, L. Efficacy of Annona squamosa L in the synthesis of glycosaminoglycans and collagen during wound repair in streptozotocin induced diabetic rats. BioMed Res. Int., 2014, 2014124352
[http://dx.doi.org/10.1155/2014/124352] [PMID: 25003104]
[31]
Ganeshkumar, M.; Ponrasu, T.; Krithika, R.; Iyappan, K.; Gayathri, V.S.; Suguna, L. Topical application of Acalypha indica accelerates rat cutaneous wound healing by up-regulating the expression of Type I and III collagen. J. Ethnopharmacol., 2012, 142(1), 14-22.
[http://dx.doi.org/10.1016/j.jep.2012.04.005] [PMID: 22521732]
[32]
Ponrasu, T.; Madhukumar, K.N.; Ganeshkumar, M.; Iyappan, K.; Sangeethapriya, V.; Gayathri, V.S.; Suguna, L. Efficacy of Acorus calamus on collagen maturation on full thickness cutaneous wounds in rats. Pharmacogn. Mag., 2014, 10(Suppl. 2), S299-S305.
[http://dx.doi.org/10.4103/0973-1296.133283] [PMID: 24991107]
[33]
Sumitra, M.; Manikandan, P.; Suguna, L. Efficacy of Butea monosperma on dermal wound healing in rats. Int. J. Biochem. Cell Biol., 2005, 37(3), 566-573.
[http://dx.doi.org/10.1016/j.biocel.2004.08.003] [PMID: 15618014]
[34]
Sumitra, M.; Manikandan, P.; Gayathri, V.S.; Mahendran, P.; Suguna, L. Emblica officinalis exerts wound healing action through up-regulation of collagen and extracellular signal-regulated kinases (ERK1/2). Wound Repair Regen., 2009, 17(1), 99-107.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00446.x] [PMID: 19152656]
[35]
Suguna, L.; Singh, S.; Sivakumar, P.; Sampath, P.; Chandrakasan, G. Influence of Terminalia chebula on dermal wound healing in rats. Phytother. Res., 2002, 16(3), 227-231.
[http://dx.doi.org/10.1002/ptr.827] [PMID: 12164266]
[36]
Ezzat, S.M.; Choucry, M.A.; Kandil, Z.A. Antibacterial, antioxidant, and topical anti-inflammatory activities of Bergia ammannioides: A wound-healing plant. Pharm. Biol., 2016, 54(2), 215-224.
[http://dx.doi.org/10.3109/13880209.2015.1028079] [PMID: 25853974]
[37]
Jewo, P.I.; Fadeyibi, I.O.; Babalola, O.S.; Saalu, L.C.; Benebo, A.S.; Izegbu, M.C.; Ashiru, O.A. A comparative study of the wound healing properties of moist exposed burn ointment [Mebo] and silver sulphadiazine. Ann. Burns Fire Disasters, 2009, 22(2), 79-82.
[PMID: 21991159]
[38]
Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett., 2009, 285(2), 109-115.
[http://dx.doi.org/10.1016/j.canlet.2009.04.033] [PMID: 19464787]
[39]
Gomathi, K.; Gopinath, D.; Rafiuddin Ahmed, M.; Jayakumar, R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials, 2003, 24(16), 2767-2772.
[http://dx.doi.org/10.1016/S0142-9612(03)00059-0] [PMID: 12711523]
[40]
Manivannan, R.; Prabakaran, K.; Ilayaraja, S. Isolation, identification and antibacterial and wound healing studies of quercetin-3-O-α-L-rhamnopyranoside-2-gallate. Int. J. Appl. Sci. Eng., 2014, 12, 99-106.
[41]
Thiem, B.; Grosslinka, O. Antimicrobial activity of Rubus chamaemorus leaves. Fitoter., 2003, 75, 93-95.
[http://dx.doi.org/10.1016/j.fitote.2003.08.014] [PMID: 14693229]
[42]
Pastorino, G.; Marchetti, C.; Borghesi, B.; Cornara, L.; Ribulla, S.; Burlando, B. Biological activities of the legume crops Melilotus officinalis and Lespedeza capitata for skin care and pharmaceutical applications. Ind. Crops Prod., 2017, 96, 158-164.
[http://dx.doi.org/10.1016/j.indcrop.2016.11.047]
[43]
Clericuzio, M.; Tinello, S.; Burlando, B.; Ranzato, E.; Martinotti, S.; Cornara, L.; La Rocca, A. Flavonoid oligoglycosides from Ophioglossum vulgatum L. having wound healing properties. Planta Med., 2012, 78(15), 1639-1644.
[http://dx.doi.org/10.1055/s-0032-1315149] [PMID: 22936389]
[44]
Krishnappa, P.; Venkatarangaiah, K. Venkatesh, Rajanna SKS, Balan RK. Wound healing activity of Delonixelata stem bark extract and its isolated constituent quercetin-3-rhamnopyranosyl-[1-6] glucopyranoside in rats. JPA, 2016, 6(6), 389-395.
[http://dx.doi.org/10.1016/j.jpha.2016.05.001] [PMID: 29404008]
[45]
Nithya, M.; Suguna, L.; Rose, C. The effect of nerve growth factor on the early responses during the process of wound healing. Biochim. Biophys. Acta, 2003, 1620(1-3), 25-31.
[http://dx.doi.org/10.1016/S0304-4165(02)00501-9] [PMID: 12595069]
[46]
Lodhi, S.; Jain, A.; Jain, A.P.; Pawar, R.S.; Singhai, A.K. Effects of flavonoids from Martynia annua and Tephrosia purpurea on cutaneous wound healing. Avicenna J. Phytomed., 2016, 6(5), 578-591.
[PMID: 27761428]
[47]
Lodhi, S.; Singhai, A.K. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pac. J. Trop. Med., 2013, 6(4), 253-259.
[http://dx.doi.org/10.1016/S1995-7645(13)60053-X] [PMID: 23608325]
[48]
Lodhi, S.; Jain, A.P.; Sharma, V.K.; Singhai, A.K. Wound healing effect of flavonoid-rich fraction from Tephrosia purpurea Linn. on Streptozotocin-induced diabetic rats. J. Herbs Spices Med. Plants, 2013, 19, 191-205.
[http://dx.doi.org/10.1080/10496475.2013.779620]
[49]
Freiesleben, S.H.; Soelberg, J.; Nyberg, N.T.; Jäger, A.K. Determination of the wound healing potentials of medicinal plants historically used in Ghana. Evid. Based Complement. Alternat. Med., 2017.20179480791
[http://dx.doi.org/10.1155/2017/9480791] [PMID: 28326125]
[50]
Almeida, J.S.; Benvegnú, D.M.; Boufleur, N.; Reckziegel, P.; Barcelos, R.C.S.; Coradini, K.; de Carvalho, L.M.; Bürger, M.E.; Beck, R.C.R. Hydrogels containing rutin intended for cutaneous administration: efficacy in wound healing in rats. Drug Dev. Ind. Pharm., 2012, 38(7), 792-799.
[http://dx.doi.org/10.3109/03639045.2011.628676] [PMID: 22066462]
[51]
Patil, S.L.; Mallaiah, S.H.; Patil, R.K. Antioxidative and radioprotective potential of rutin and quercetin in Swiss albino mice exposed to gamma radiation. J. Med. Phys., 2013, 38(2), 87-92.
[http://dx.doi.org/10.4103/0971-6203.111321] [PMID: 23776312]
[52]
Tran, N.Q.; Joung, Y.K.; Lih, E.; Park, K.D. In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules, 2011, 12(8), 2872-2880.
[http://dx.doi.org/10.1021/bm200326g] [PMID: 21591793]
[53]
Brown, S.A.; Coimbra, M.; Coberly, D.M.; Chao, J.J.; Rohrich, R.J. Oral nutritional supplementation accelerates skin wound healing: a randomized, placebo-controlled, double-arm, crossover study. Plast. Reconstr. Surg., 2004, 114(1), 237-244.
[http://dx.doi.org/10.1097/01.PRS.0000128818.28425.52] [PMID: 15220599]
[54]
George, B.P.; Parimelazhagan, T.; Sajeesh, T.; Saravanan, S. Antitumor and wound healing properties of Rubus niveus Thunb. root. J. Environ. Pathol. Toxicol. Oncol., 2014, 33(2), 145-158.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2014010949] [PMID: 24941297]
[55]
Parente, L.M. Lino Júnior, Rde.S.; Tresvenzol, L.M.; Vinaud, M.C.; de Paula, J.R.; Paulo, N.M. Wound healing and antiinflammatory effect in animal models of Calendula officinalis L. growing in brazil. Evid. Based Complement. Alternat. Med., 2012, 2012375671
[http://dx.doi.org/10.1155/2012/375671] [PMID: 22315631]
[56]
Preethi, K.; Kuttan, G.; Kuttan, R. Antioxidant potential of an extract of Calendula officinalis flowers in vitro and in vivo. Pharm. Biol., 2006, 44, 691-697.
[http://dx.doi.org/10.1080/13880200601009149]
[57]
Dinda, M.; Mazumdar, S.; Das, S.; Ganguly, D.; Dasgupta, U.B.; Dutta, A.; Jana, K.; Karmakar, P. The water fraction of Calendula officinalis hydroethanol extract stimulates in vitro and in vivo proliferation of dermal fibroblasts in wound healing. Phytother. Res., 2016, 30(10), 1696-1707.
[http://dx.doi.org/10.1002/ptr.5678] [PMID: 27426257]
[58]
Frazier, K.; Williams, S.; Kothapalli, D.; Klapper, H.; Grotendorst, G.R. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J. Invest. Dermatol., 1996, 107(3), 404-411.
[http://dx.doi.org/10.1111/1523-1747.ep12363389] [PMID: 8751978]
[59]
Henshaw, F.R.; Boughton, P.; Lo, L.; McLennan, S.V.; Twigg, S.M. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing. J. Diabetes Res., 2015, 2015236238
[http://dx.doi.org/10.1155/2015/236238] [PMID: 25789327]
[60]
Liu, L.D.; Shi, H.J.; Jiang, L. Li-chun Wang L, Ma S, Dong C, Wang J, Zhao H, Liao Y, Li Q. The repairing effect of a recombinant human connective-tissue growth factor in a burn-wounded rhesus-monkey [Macacamulatta] model. Biotechnol. Appl. Biochem., 2007, 47, 105-112.
[http://dx.doi.org/10.1042/BA20060114] [PMID: 17181532]
[61]
Machado, M.A.; Contar, C.M.; Brustolim, J.A.; Candido, L.; Azevedo-Alanis, L.R.; Gregio, A.M.T.; Trevilatto, P.C.; Soares de Lima, A.A. Management of two cases of desquamative gingivitis with clobetasol and Calendula officinalis gel. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2010, 154(4), 335-338.
[http://dx.doi.org/10.5507/bp.2010.050] [PMID: 21293545]
[62]
Saini, P.; Al-Shibani, N.; Sun, J.; Zhang, W.; Song, F.; Gregson, K.S.; Windsor, L.J. Effects of Calendula officinalis on human gingival fibroblasts. Homeopathy, 2012, 101(2), 92-98.
[http://dx.doi.org/10.1016/j.homp.2012.02.003] [PMID: 22487368]
[63]
Süntar, I.P.; Akkol, E.K.; Yalçin, F.N.; Koca, U.; Keleş, H.; Yesilada, E. Wound healing potential of Sambucus ebulus L. leaves and isolation of an active component, quercetin 3-O-glucoside. J. Ethnopharmacol., 2010, 129(1), 106-114.
[http://dx.doi.org/10.1016/j.jep.2010.01.051] [PMID: 20132876]
[64]
Seo, S.H.; Lee, S.H.; Cha, P.H.; Kim, M.Y.; Min, S.; Choi, K.Y. Polygonum aviculare L. and its active compounds, quercitrin hydrate, caffeic acid, and rutin, activate the Wnt/β-catenin pathway and induce cutaneous wound healing. Phytother. Res., 2016, 30(5), 848-854.
[http://dx.doi.org/10.1002/ptr.5593] [PMID: 26929003]
[65]
Bielefeld, K.A.; Amini-Nik, S.; Alman, B.A. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell. Mol. Life Sci., 2013, 70(12), 2059-2081.
[http://dx.doi.org/10.1007/s00018-012-1152-9] [PMID: 23052205]
[66]
Lee, S.H.; Zahoor, M.; Hwang, J.K.; Min, S.; Choi, K.Y. Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility. PLoS One, 2012, 7(11)e48791
[http://dx.doi.org/10.1371/journal.pone.0048791] [PMID: 23144972]
[67]
Bellavia, G.; Fasanaro, P.; Melchionna, R.; Capogrossi, M.C.; Napolitano, M. Transcriptional control of skin reepithelialization. J. Dermatol. Sci., 2014, 73(1), 3-9.
[http://dx.doi.org/10.1016/j.jdermsci.2013.08.007] [PMID: 24012494]
[68]
Lee, S.H.; Yoon, J.; Shin, S.H.; Zahoor, M.; Kim, H.J.; Park, P.J.; Park, W.S.; Min, S.; Kim, H.Y.; Choi, K.Y. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells. PLoS One, 2012, 7(4)e34152
[http://dx.doi.org/10.1371/journal.pone.0034152] [PMID: 22506014]
[69]
Moalla Rekik, D.; Ben Khedir, S.; Ksouda Moalla, K.; Kammoun, N.G.; Rebai, T.; Sahnoun, Z. Evaluation of Wound Healing Properties of Grape Seed, Sesame, and Fenugreek Oils. Evid. Based Complement. Alternat. Med., 2016, 20167965689
[http://dx.doi.org/10.1155/2016/7965689] [PMID: 27990170]
[70]
Bravi, M.; Spinoglio, F.; Verdone, N. Improving the extraction of α-tocopherol-enriched oil from grape seeds by supercritical CO2. Optimization of the extraction conditions. J. Food Eng., 2007, 78, 488-493.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.10.017]
[71]
Lawrence, W.T. Physiology of the acute wound. Clin. Plast. Surg., 1998, 25(3), 321-340.
[PMID: 9696896]
[72]
Farage, MA; Miller, KW; Maibach, HI Degenerative changes in aging skin., 2010.
[http://dx.doi.org/10.1007/978-3-540-89656-2_4]
[73]
Aiello, F.; Carullo, G.; Badolato, M.; Brizzi, A. TRPV1-FAAH-COX: The couples game in pain treatment. ChemMedChem, 2016, 11(16), 1686-1694.
[http://dx.doi.org/10.1002/cmdc.201600111] [PMID: 27240888]
[74]
De Jong, A.; Plat, J.; Bast, A.; Godschalk, R.W.L.; Basu, S.; Mensink, R.P. Effects of plant sterol and stanol ester consumption on lipid metabolism, antioxidant status and markers of oxidative stress, endothelial function and low-grade inflammation in patients on current statin treatment. Eur. J. Clin. Nutr., 2008, 62(2), 263-273.
[http://dx.doi.org/10.1038/sj.ejcn.1602733] [PMID: 17487211]
[75]
Süntar, I.P.; Akkol, E.K.; Yilmazer, D.; Baykal, T.; Kirmizibekmez, H.; Alper, M.; Yeşilada, E. Investigations on the in vivo wound healing potential of Hypericum perforatum L. J. Ethnopharmacol., 2010, 127(2), 468-477.
[http://dx.doi.org/10.1016/j.jep.2009.10.011] [PMID: 19833187]
[76]
Calvo, T.R.; Lima, Z.P.; Silva, J.S.; Ballesteros, K.V.R.; Pellizzon, C.H.; Hiruma-Lima, C.A.; Tamashiro, J.; Brito, A.R.; Takahira, R.K.; Vilegas, W. Constituents and antiulcer effect of Alchornea glandulosa: activation of cell proliferation in gastric mucosa during the healing process. Biol. Pharm. Bull., 2007, 30(3), 451-459.
[http://dx.doi.org/10.1248/bpb.30.451] [PMID: 17329837]
[77]
González, E.; Montenegro, M.A.; Nazareno, M.A.; López de Mishima, B.A. Carotenoid composition and vitamin A value of an Argentinian squash (Cucurbita moschata). Arch. Latinoam. Nutr., 2001, 51(4), 395-399.
[PMID: 12012567]
[78]
Kahraman, A.; Erkasap, N.; Köken, T.; Serteser, M.; Aktepe, F.; Erkasap, S. The antioxidative and antihistaminic properties of quercetin in ethanol-induced gastric lesions. Toxicology, 2003, 183(1-3), 133-142.
[http://dx.doi.org/10.1016/S0300-483X(02)00514-0] [PMID: 12504347]
[79]
de Barros, M.; Mota da Silva, L.; Boeing, T.; Somensi, L.B.; Cury, B.J.; de Moura Burci, L.; Santin, J.R.; de Andrade, S.F.; Monache, F.D.; Cechinel-Filho, V. Pharmacological reports about gastroprotective effects of methanolic extract from leaves of Solidago chilensis (Brazilian arnica) and its components quercitrin and afzelin in rodents. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(4), 403-417.
[http://dx.doi.org/10.1007/s00210-015-1208-0] [PMID: 26758066]
[80]
Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J., 2003, 17(10), 1195-1214.
[http://dx.doi.org/10.1096/fj.02-0752rev] [PMID: 12832285]
[81]
Sitarek, P.; Skala, E. WysokiNska H, Wielanek M, Szemraj J, Toma M, Tomasz UliwiNski T. The Effect of Leonuruss ibiricus Plant Extracts on Stimulating Repair and Protective Activity against Oxidative DNA Damage in CHO Cells and Content of Phenolic Compounds. Oxid. Med. Cell. Longev., 2016, 2016(14)5738193
[http://dx.doi.org/10.1155/2016/5738193] [PMID: 26788249]
[82]
Moulaoui, K.; Caddeo, C.; Manca, M.L.; Castangia, I.; Valenti, D.; Escribano, E.; Atmani, D.; Fadda, A.M.; Manconi, M. Identification and nanoentrapment of polyphenolic phytocomplex from Fraxinus angustifolia: in vitro and in vivo wound healing potential. Eur. J. Med. Chem., 2015, 89, 179-188.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.047] [PMID: 25462238]
[83]
Song, L.; Tian, L.; Maa, Y.; Xie, Y.; Feng, H.; Qin, F.; Moa, L.; Lin, S.; Hou, L.; Wanga, C. Protection of flavonoids from Smilax china L. rhizome on phenol mucilage-induced pelvic inflammation in rats by attenuating inflammation and fibrosis. J. Funct. Foods, 2017, 28, 194-204.
[http://dx.doi.org/10.1016/j.jff.2016.11.015]
[84]
Hwang, I.K.; Lee, C.H.; Yoo, K.Y.; Choi, J.H.; Park, O.K.; Lim, S.S.; Kang, I.J.; Kwon, D.Y.; Park, J.; Yi, J.S.; Bae, Y.S.; Won, M.H. Neuroprotective effects of onion extract and quercetin against ischemic neuronal damage in the gerbil hippocampus. J. Med. Food, 2009, 12(5), 990-995.
[http://dx.doi.org/10.1089/jmf.2008.1400] [PMID: 19857061]
[85]
Sydserff, S.G.; Cross, A.J.; Green, A.R. The neuroprotective effect of chlormethiazole on ischaemic neuronal damage following permanent middle cerebral artery ischaemia in the rat. Neurodegeneration, 1995, 4(3), 323-328.
[http://dx.doi.org/10.1016/1055-8330(95)90022-5] [PMID: 8581565]
[86]
Cho, J.Y.; Kim, I.S.; Jang, Y.H.; Kim, A.R.; Lee, S.R. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci. Lett., 2006, 404(3), 330-335.
[http://dx.doi.org/10.1016/j.neulet.2006.06.010] [PMID: 16806698]
[87]
Singh, D.; Chander, V.; Chopra, K. The effect of quercetin, a bioflavonoid on ischemia/reperfusion induced renal injury in rats. Arch. Med. Res., 2004, 35(6), 484-494.
[http://dx.doi.org/10.1016/j.arcmed.2004.10.004] [PMID: 15631872]
[88]
Zhao, L.R.; Du, Y.J.; Chen, L.; Liu, Z.G.; Pan, Y.H.; Liu, J.F.; Liu, B. Quercetin protects against high glucose-induced damage in bone marrow-derived endothelial progenitor cells. Int. J. Mol. Med., 2014, 34(4), 1025-1031.
[http://dx.doi.org/10.3892/ijmm.2014.1852] [PMID: 25197782]
[89]
Wong, R.W.K.; Rabie, A.B.M. Effect of quercetin on bone formation. J. Orthop. Res., 2008, 26(8), 1061-1066.
[http://dx.doi.org/10.1002/jor.20638] [PMID: 18383168]
[90]
Prouillet, C.; Mazière, J.C.; Mazière, C.; Wattel, A.; Brazier, M.; Kamel, S. Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem. Pharmacol., 2004, 67(7), 1307-1313.
[http://dx.doi.org/10.1016/j.bcp.2003.11.009] [PMID: 15013846]
[91]
Höpfner, M.; Schuppan, D.; Scherübl, H. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer. World J. Gastroenterol., 2008, 14(1), 1-14.
[http://dx.doi.org/10.3748/wjg.14.1] [PMID: 18176955]
[92]
Cuevas, M.J.; Tieppo, J.; Marroni, N.P.; Tuñón, M.J.; González-Gallego, J. Suppression of amphiregulin/epidermal growth factor receptor signals contributes to the protective effects of quercetin in cirrhotic rats. J. Nutr., 2011, 141(7), 1299-1305.
[http://dx.doi.org/10.3945/jn.111.140954] [PMID: 21562239]
[93]
Nones, J.; Spohr, T.C.; Gomes, F.C. Effects of the flavonoid hesperidin in cerebral cortical progenitors in vitro: indirect action through astrocytes. Int. J. Dev. Neurosci., 2012, 30(4), 303-313.
[http://dx.doi.org/10.1016/j.ijdevneu.2012.01.008] [PMID: 22322314]
[94]
Yuan, Z.; Yao, F.; Hu, Z.; Sun, S.; Wu, B. Quercetin inhibits the migration and proliferation of astrocytes in wound healing. Neuroreport, 2015, 26(7), 387-393.
[http://dx.doi.org/10.1097/WNR.0000000000000352] [PMID: 25793633]
[95]
McKay, T.B.; Karamichos, D. Quercetin and the ocular surface: What we know and where we are going. Exp. Biol. Med. (Maywood), 2017, 242(6), 565-572.
[http://dx.doi.org/10.1177/1535370216685187] [PMID: 28056553]
[96]
McKay, T.B.; Lyon, D.; Sarker-Nag, A.; Priyadarsini, S.; Asara, J.M.; Karamichos, D. Quercetin attenuates lactate production and extracellular matrix secretion in keratoconus. Sci. Rep., 2015, 5, 9003.
[http://dx.doi.org/10.1038/srep09003] [PMID: 25758533]
[97]
McKay, T.B.; Sarker-Nag, A.; Lyon, D.; Asara, J.M.; Karamichos, D. Quercetin modulates keratoconus metabolism in vitro. Cell Biochem. Funct., 2015, 33(5), 341-350.
[http://dx.doi.org/10.1002/cbf.3122] [PMID: 26173740]
[98]
Suter, V.G.A.; Sjölund, S.; Bornstein, M.M. Effect of laser on pain relief and wound healing of recurrent aphthous stomatitis: a systematic review. Lasers Med. Sci., 2017, 32(4), 953-963.
[http://dx.doi.org/10.1007/s10103-017-2184-z] [PMID: 28345122]
[99]
Hamdy, A.A.E.M.; Ibrahem, M.A.E. Management of aphthous ulceration with topical quercetin: a randomized clinical trial. J. Contemp. Dent. Pract., 2010, 11(4), E009-E016.
[http://dx.doi.org/10.5005/jcdp-11-4-9] [PMID: 20953559]
[100]
Gómez-Florit, M.; Monjo, M.; Ramis, J.M. Identification of quercitrin as a potential therapeutic agent for periodontal applications. J. Periodontol., 2014, 85(7), 966-974.
[http://dx.doi.org/10.1902/jop.2014.130438] [PMID: 24548116]
[101]
Singh, D.P.; Borse, S.P.; Nivsarkar, M. Co-administration of quercetin with pantoprazole sodium prevents NSAID-induced severe gastroenteropathic damage efficiently: Evidence from a preclinical study in rats. Exp. Toxicol. Pathol., 2017, 69(1), 17-26.
[http://dx.doi.org/10.1016/j.etp.2016.10.004] [PMID: 27780667]
[102]
El Goweini, M.F.; Nour El Din, N.M. Effect of Quercetin on Excessive Dermal Scarring; EDOJ, 2005, p. 1.
[103]
Phan, T.T.; Sun, L.; Bay, B.H.; Chan, S.Y.; Lee, S.T. Dietary compounds inhibit proliferation and contraction of keloid and hypertrophic scar-derived fibroblasts in vitro: therapeutic implication for excessive scarring. J. Trauma, 2003, 54(6), 1212-1224.
[http://dx.doi.org/10.1097/01.TA.0000030630.72836.32] [PMID: 12813346]
[104]
Long, X.; Zeng, X.; Zhang, F.Q.; Wang, X.J. Influence of quercetin and x-ray on collagen synthesis of cultured human keloid-derived fibroblasts. Chin. Med. Sci. J., 2006, 21(3), 179-183.
[PMID: 17086741]
[105]
Mathangi Ramakrishnan, K.; Babu, M.; Lakshmi Madhavi, M.S. Response of keloid fibroblasts to Vitamin D3 and quercetin treatment - in vitro study. Ann. Burns Fire Disasters, 2015, 28(3), 187-191.
[PMID: 27279805]
[106]
Gouma, E.; Simos, Y.; Verginadis, I.; Batistatou, A.; Karkabounas, S.; Evangelou, A.; Ragos, V.; Peschos, D. Healing effect of quercetin on full thickness epidermal thermal injury in wistar rats. Int. J. Phytomed., 2016, 8, 277-281.
[107]
Vicentini, F.T.M.C.; He, T.; Shao, Y.; Fonseca, M.J.V.; Verri, W.A., Jr; Fisher, G.J.; Xu, Y. Quercetin inhibits UV irradiation-induced inflammatory cytokine production in primary human keratinocytes by suppressing NF-κB pathway. J. Dermatol. Sci., 2011, 61(3), 162-168.
[http://dx.doi.org/10.1016/j.jdermsci.2011.01.002] [PMID: 21282043]
[108]
Horton, J.A.; Li, F.; Chung, E.J.; Hudak, K.; White, A.; Krausz, K.; Gonzalez, F.; Citrin, D. Quercetin inhibits radiation-induced skin fibrosis. Radiat. Res., 2013, 180(2), 205-215.
[http://dx.doi.org/10.1667/RR3237.1] [PMID: 23819596]
[109]
Gopalakrishnan, A.; Ram, M.; Kumawat, S.; Tandan, S.; Kumar, D. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J. Exp. Biol., 2016, 54(3), 187-195.
[PMID: 27145632]
[110]
Doersch, K.M.; Newell-Rogers, M.K. The impact of quercetin on wound healing relates to changes in αV and β1 integrin expression. Exp. Biol. Med. (Maywood), 2017, 242(14), 1424-1431.
[http://dx.doi.org/10.1177/1535370217712961] [PMID: 28549404]
[111]
Prasain, J.K.; Barnes, S. Metabolism and bioavailability of flavonoids in chemoprevention: current analytical strategies and future prospectus. Mol. Pharm., 2007, 4(6), 846-864.
[http://dx.doi.org/10.1021/mp700116u] [PMID: 18052086]
[112]
Hung, C.F.; Fang, C.L.; Al-Suwayeh, S.A.; Yang, S.Y.; Fang, J.Y. Evaluation of drug and sunscreen permeation via skin irradiated with UVA and UVB: comparisons of normal skin and chronologically aged skin. J. Dermatol. Sci., 2012, 68(3), 135-148.
[http://dx.doi.org/10.1016/j.jdermsci.2012.09.005] [PMID: 23026054]
[113]
Hatahet, T.; Morille, M.; Hommoss, A.; Devoisselle, J.M.; Müller, R.H.; Bégu, S. Quercetin topical application, from conventional dosage forms to nanodosage forms. Eur. J. Pharm. Biopharm., 2016, 108, 41-53.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.011] [PMID: 27565033]
[114]
Montenegro, L.; Carbone, C.; Maniscalco, C.; Lambusta, D.; Nicolosi, G.; Ventura, C.A.; Puglisi, G. In vitro evaluation of quercetin-3-O-acyl esters as topical prodrugs. Int. J. Pharm., 2007, 336(2), 257-262.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.003] [PMID: 17257788]
[115]
Censi, R.; Martena, V.; Hoti, E.; Malaj, L.; Di Martino, P. Permeation and skin retention of quercetin from microemulsions containing Transcutol® P. Drug Dev. Ind. Pharm., 2012, 38(9), 1128-1133.
[http://dx.doi.org/10.3109/03639045.2011.641564] [PMID: 22188183]
[116]
Vicentini, F.T.M.C.; Simi, T.R.M.; Del Ciampo, J.O.; Wolga, N.O.; Pitol, D.L.; Iyomasa, M.M.; Bentley, M.V.L.B.; Fonseca, M.J.V. Quercetin in w/o microemulsion: in vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur. J. Pharm. Biopharm., 2008, 69(3), 948-957.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.012] [PMID: 18304790]
[117]
Dias, A.M.A.; Braga, M.E.M.; Seabra, I.J.; Ferreira, P.; Gil, M.H.; de Sousa, H.C. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int. J. Pharm., 2011, 408(1-2), 9-19.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.063] [PMID: 21316432]
[118]
Tan, Q.; Liu, W.; Guo, C.; Zhai, G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int. J. Nanomedicine, 2011, 6, 1621-1630.
[http://dx.doi.org/10.2147/IJN.S22411] [PMID: 21904452]
[119]
Vedakumari, W.S.; Ayaz, N.; Karthick, A.S.; Senthil, R.; Sastry, T.P. Quercetin impregnated chitosan-fibrin composite scaffolds as potential wound dressing materials - Fabrication, characterization and in vivo analysis. Eur. J. Pharm. Sci., 2017, 97, 106-112.
[http://dx.doi.org/10.1016/j.ejps.2016.11.012] [PMID: 27864063]
[120]
Chen-yu, G.; Chun-fen, Y.; Qi-lu, L.; Qi, T.; Yan-wei, X.; Wei-na, L.; Guang-xi, Z. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int. J. Pharm., 2012, 430(1-2), 292-298.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.042] [PMID: 22486962]
[121]
Bose, S.; Du, Y.; Takhistov, P.; Michniak-Kohn, B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm., 2013, 441(1-2), 56-66.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.013] [PMID: 23262430]
[122]
Jangde, R.; Singh, D. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 635-641.
[http://dx.doi.org/10.3109/21691401.2014.975238] [PMID: 25375215]
[123]
Cadena, P.G.; Pereira, M.A.; Cordeiro, R.B.S.; Cavalcanti, I.M.F.; Barros Neto, B. Pimentel, Mdo.C.; Lima Filho, J.L.; Silva, V.L.; Santos-Magalhães, N.S. Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochim. Biophys. Acta, 2013, 1828(2), 309-316.
[http://dx.doi.org/10.1016/j.bbamem.2012.10.022] [PMID: 23103506]
[124]
Park, S.N.; Lee, M.H.; Kim, S.J.; Yu, E.R. Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system. Biochem. Biophys. Res. Commun., 2013, 435(3), 361-366.
[http://dx.doi.org/10.1016/j.bbrc.2013.04.093] [PMID: 23669037]
[125]
Manca, M.L.; Castangia, I.; Caddeo, C.; Pando, D.; Escribano, E.; Valenti, D.; Lampis, S.; Zaru, M.; Fadda, A.M.; Manconi, M. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids Surf. B Biointerfaces, 2014, 123, 566-574.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.059] [PMID: 25444664]
[126]
Liu, D.; Hu, H.; Lin, Z.; Chen, D.; Zhu, Y.; Hou, S.; Shi, X. Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J. Photochem. Photobiol. B, 2013, 127, 8-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.07.014] [PMID: 23933244]
[127]
Chessa, M.; Caddeo, C.; Valenti, D.; Manconi, M.; Sinico, C.; Fadda, A.M. Effect of penetration enhancer containing vesicles on the percutaneous delivery of quercetin through new born pig skin. Pharmaceutics, 2011, 3(3), 497-509.
[http://dx.doi.org/10.3390/pharmaceutics3030497] [PMID: 24310593]
[128]
Caddeo, C.; Díez-Sales, O.; Pons, R.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: in vivo and in vitro evaluation. Pharm. Res., 2014, 31(4), 959-968.
[http://dx.doi.org/10.1007/s11095-013-1215-0] [PMID: 24297068]
[129]
Castangia, I.; Nácher, A.; Caddeo, C.; Valenti, D.; Fadda, A.M.; Díez-Sales, O.; Ruiz-Saurí, A.; Manconi, M. Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomater., 2014, 10(3), 1292-1300.
[http://dx.doi.org/10.1016/j.actbio.2013.11.005] [PMID: 24239901]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy