Review Article

半胱氨酸靶向的酪氨酸激酶的不可逆抑制剂和关键相互作用。

卷 26, 期 31, 2019

页: [5811 - 5824] 页: 14

弟呕挨: 10.2174/0929867325666180713124223

价格: $65

摘要

酪氨酸激酶是将磷酸基团从ATP转移到各种氨基酸残基的一大类蛋白激酶的子集。通过使酪氨酸残基磷酸化,酪氨酸激酶负责通过信号转导级联激活各种蛋白质,这是细胞信号转导的普遍机制。许多酪氨酸激酶抑制剂(TKIs)在临床上的成功应用以及蛋白激酶中的致病突变表明,大量激酶可能代表了治疗相关的靶标。迄今为止,大多数临床和临床前TKI都是ATP竞争性非共价抑制剂,它们通过识别特定蛋白激酶的独特特征来实现其选择性。现在,在科学界越来越感兴趣的是不可逆抑制剂的开发,该抑制剂与半胱氨酸或ATP结合口袋中的其他亲核残基形成共价键。不可逆的TKI具有许多潜在的优势,包括延长的药效学,合理的化合物设计适用性,高效力以及通过反应性半胱氨酸残基的突变来验证药理学特异性的能力。在这里,我们回顾了开发以半胱氨酸为目标的不可逆TKIs的最新努力,并讨论了其识别三磷酸腺苷结合口袋及其生物学活性的构型模式。

关键词: 半胱氨酸,TKI,抗癌剂,EGFR,不可逆的关键相互作用。

[1]
Schlessinger, J. Cell signaling by receptor tyrosine kinases: From basic principles to cancer therapy. Cancer Res., 2012, 72.
[2]
Zhang, H.Q.; Gong, F.H.; Li, C.G.; Zhang, C.; Wang, Y.J.; Xu, Y.G.; Sun, L.P. Design and discovery of 4-anilinoquinazoline-acylamino derivatives as EGFR and VEGFR-2 dual TK inhibitors. Eur. J. Med. Chem., 2016, 109, 371-379.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.032] [PMID: 26826581]
[3]
Liao, J.J.L. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J. Med. Chem., 2007, 50(3), 409-424.
[http://dx.doi.org/10.1021/jm0608107] [PMID: 17266192]
[4]
Conconi, M.T.; Marzaro, G.; Urbani, L.; Zanusso, I.; Di Liddo, R.; Castagliuolo, I.; Brun, P.; Tonus, F.; Ferrarese, A.; Guiotto, A.; Chilin, A. Quinazoline-based multi-tyrosine kinase inhibitors: synthesis, modeling, antitumor and antiangiogenic properties. Eur. J. Med. Chem., 2013, 67, 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.057] [PMID: 23900004]
[5]
Brehmer, D.; Greff, Z.; Godl, K.; Blencke, S.; Kurtenbach, A.; Weber, M.; Müller, S.; Klebl, B.; Cotten, M.; Kéri, G.; Wissing, J.; Daub, H. Cellular targets of gefitinib. Cancer Res., 2005, 65(2), 379-382.
[PMID: 15695376]
[6]
Oxnard, G.R.; Janjigian, Y.Y.; Arcila, M.E.; Sima, C.S.; Kass, S.L.; Riely, G.J.; Pao, W.; Kris, M.G.; Ladanyi, M.; Azzoli, C.G.; Miller, V.A. Maintained sensitivity to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer recurring after adjuvant erlotinib or gefitinib. Clin. Cancer Res., 2011, 17(19), 6322-6328.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1080] [PMID: 21831955]
[7]
Gainor, J.F.; Shaw, A.T. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J. Clin. Oncol., 2013, 31(31), 3987-3996.
[http://dx.doi.org/10.1200/JCO.2012.45.2029] [PMID: 24101047]
[8]
Singh, J.; Petter, R.C.; Baillie, T.A.; Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov., 2011, 10(4), 307-317.
[http://dx.doi.org/10.1038/nrd3410] [PMID: 21455239]
[9]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; Louis, D.N.; Christiani, D.C.; Settleman, J.; Haber, D.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[http://dx.doi.org/10.1056/NEJMoa040938] [PMID: 15118073]
[10]
Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
[http://dx.doi.org/10.1126/science.1099314] [PMID: 15118125]
[11]
Zhang, J.; Jia, J.; Zhu, F.; Ma, X.; Han, B.; Wei, X.; Tan, C.; Jiang, Y.; Chen, Y. Analysis of bypass signaling in EGFR pathway and profiling of bypass genes for predicting response to anticancer EGFR tyrosine kinase inhibitors. Mol. Biosyst., 2012, 8(10), 2645-2656.
[http://dx.doi.org/10.1039/c2mb25165e] [PMID: 22833077]
[12]
Jackman, D.M.; Yeap, B.Y.; Sequist, L.V.; Lindeman, N.; Holmes, A.J.; Joshi, V.A.; Bell, D.W.; Huberman, M.S.; Halmos, B.; Rabin, M.S.; Haber, D.A.; Lynch, T.J.; Meyerson, M.; Johnson, B.E.; Jänne, P.A. Exon 19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefitinib or erlotinib. Clin. Cancer Res., 2006, 12(13), 3908-3914.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0462] [PMID: 16818686]
[13]
Wang, D.D.; Lee, V.H.; Zhu, G.; Zou, B.; Ma, L.; Yan, H. Selectivity profile of afatinib for EGFR-mutated non-small-cell lung cancer. Mol. Biosyst., 2016, 12(5), 1552-1563.
[http://dx.doi.org/10.1039/C6MB00038J] [PMID: 26961138]
[14]
Landi, L.; Cappuzzo, F. Irreversible EGFR-TKIs: dreaming perfection. Transl. Lung Cancer Res., 2013, 2(1), 40-49.
[http://dx.doi.org/10.3978/j.issn.2218-6751.2012.12.05] [PMID: 25806203]
[15]
Liao, B.C.; Lin, C.C.; Yang, J.C. Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr. Opin. Oncol., 2015, 27(2), 94-101.
[http://dx.doi.org/10.1097/CCO.0000000000000164] [PMID: 25611025]
[16]
Kobayashi, S.; Ji, H.; Yuza, Y.; Meyerson, M.; Wong, K.K.; Tenen, D.G.; Halmos, B. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res., 2005, 65(16), 7096-7101.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1346] [PMID: 16103058]
[17]
Oxnard, G.R.; Arcila, M.E.; Sima, C.S.; Riely, G.J.; Chmielecki, J.; Kris, M.G.; Pao, W.; Ladanyi, M.; Miller, V.A. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin. Cancer Res., 2011, 17(6), 1616-1622.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2692] [PMID: 21135146]
[18]
Skoulidis, F.; Papadimitrakopoulou, V.A. Targeting the Gatekeeper: Osimertinib in EGFR T790M Mutation-Positive Non-Small Cell Lung Cancer. Clin. Cancer Res., 2017, 23(3), 618-622.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2815] [PMID: 27821604]
[19]
Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; DiDonato, M.; Bursulaya, B.; Michellys, P.Y.; Epple, R.; Marsilje, T.H.; McNeill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K.K.; Jänne, P.A.; Eck, M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016, 534(7605), 129-132.
[http://dx.doi.org/10.1038/nature17960] [PMID: 27251290]
[20]
Solca, F.; Dahl, G.; Zoephel, A.; Bader, G.; Sanderson, M.; Klein, C.; Kraemer, O.; Himmelsbach, F.; Haaksma, E.; Adolf, G.R. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J. Pharmacol. Exp. Ther., 2012, 343(2), 342-350.
[http://dx.doi.org/10.1124/jpet.112.197756] [PMID: 22888144]
[21]
Li, Y.B.; Wang, Z.Q.; Yan, X.; Chen, M.W.; Bao, J.L.; Wu, G.S.; Ge, Z.M.; Zhou, D.M.; Wang, Y.T.; Li, R.T. IC-4, a new irreversible EGFR inhibitor, exhibits prominent anti-tumor and anti-angiogenesis activities. Cancer Lett., 2013, 340(1), 88-96.
[http://dx.doi.org/10.1016/j.canlet.2013.07.005] [PMID: 23856030]
[22]
Walter, A.O.; Sjin, R.T.; Haringsma, H.J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, M.; Petter, R.C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A.D.; Harding, T.C.; Allen, A. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov., 2013, 3(12), 1404-1415.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0314] [PMID: 24065731]
[23]
Yan, X.E.; Zhu, S.J.; Liang, L.; Zhao, P.; Choi, H.G.; Yun, C.H. Structural basis of mutant-selectivity and drug-resistance related to CO-1686. Oncotarget, 2017, 8(32), 53508-53517.
[http://dx.doi.org/10.18632/oncotarget.18588] [PMID: 28881827]
[24]
Remon, J.; Planchard, D. AZD9291 in EGFR-mutant advanced non-small-cell lung cancer patients. Future Oncol., 2015, 11(22), 3069-3081.
[http://dx.doi.org/10.2217/fon.15.250] [PMID: 26450446]
[25]
Yosaatmadja, Y.; Silva, S.; Dickson, J.M.; Patterson, A.V.; Smaill, J.B.; Flanagan, J.U.; McKeage, M.J.; Squire, C.J. Binding mode of the breakthrough inhibitor AZD9291 to epidermal growth factor receptor revealed. J. Struct. Biol., 2015, 192(3), 539-544.
[http://dx.doi.org/10.1016/j.jsb.2015.10.018] [PMID: 26522274]
[26]
Ward, R.A.; Anderton, M.J.; Ashton, S.; Bethel, P.A.; Box, M.; Butterworth, S.; Colclough, N.; Chorley, C.G.; Chuaqui, C.; Cross, D.A.; Dakin, L.A.; Debreczeni, J.E.; Eberlein, C.; Finlay, M.R.; Hill, G.B.; Grist, M.; Klinowska, T.C.; Lane, C.; Martin, S.; Orme, J.P.; Smith, P.; Wang, F.; Waring, M.J. Structure- and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR). J. Med. Chem., 2013, 56(17), 7025-7048.
[http://dx.doi.org/10.1021/jm400822z] [PMID: 23930994]
[27]
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Janne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786-792.
[http://dx.doi.org/10.1056/NEJMoa044238]
[28]
Lelais, G.; Epple, R.; Marsilje, T.H.; Long, Y.O.; McNeill, M.; Chen, B.; Lu, W.; Anumolu, J.; Badiger, S.; Bursulaya, B.; DiDonato, M.; Fong, R.; Juarez, J.; Li, J.; Manuia, M.; Mason, D.E.; Gordon, P.; Groessl, T.; Johnson, K.; Jia, Y.; Kasibhatla, S.; Li, C.; Isbell, J.; Spraggon, G.; Bender, S.; Michellys, P.Y. Discovery of (R,E)-N-(7-Chloro-1-(1-[4-(dimethylamino)but-2-enoyl]azepan-3-yl)-1H-benzo[d]imi-dazol-2-yl)-2-methylisonicotinamide (EGF816), a novel, potent, and WT sparing covalent inhibitor of oncogenic (L858R, ex19del) and resistant (T790M) EGFR mutants for the treatment of EGFR mutant non-small-cell lung cancers. J. Med. Chem., 2016, 59(14), 6671-6689.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01985] [PMID: 27433829]
[29]
Murakami, H.; Nokihara, H.; Shimizu, T.; Seto, T.; Keating, A.; Krivoshik, A.; Uegaki, K.; Morita, S.; Nakagawa, K.; Fukuoka, M. Antitumor activity of ASP8273, an irreversible mutant selective EGFR-TKI, in NSCLC patients with tumors harboring EGFR activating mutations and T790M resistance mutation. Eur. J. Cancer, 2014, 50, 198-198.
[http://dx.doi.org/10.1016/S0959-8049(14)70730-0]
[30]
Hu, C.; Wang, A.; Wu, H.; Qi, Z.; Li, X.; Yan, X.E.; Chen, C.; Yu, K.; Zou, F.; Wang, W.; Wang, W.; Wu, J.; Liu, J.; Wang, B.; Wang, L.; Ren, T.; Zhang, S.; Yun, C.H.; Liu, J.; Liu, Q. Discovery and characterization of a novel irreversible EGFR mutants selective and potent kinase inhibitor CHMFL-EGFR-26 with a distinct binding mode. Oncotarget, 2017, 8(11), 18359-18372.
[http://dx.doi.org/10.18632/oncotarget.15443] [PMID: 28407693]
[31]
Tiwari, S.R.; Mishra, P.; Abraham, J. Neratinib a novel Her-2 targeted tyrosine kinase inhibitor. Clin. Breast Cancer, 2016, 16(5), 344-348.
[http://dx.doi.org/10.1016/j.clbc.2016.05.016] [PMID: 27405796]
[32]
Michalczyk, A.; Kluter, S.; Rode, H.B.; Simard, J.R.; Grutter, C.; Rabiller, M.; Rauh, D. Structural insights into how irreversible inhibitors can overcome drug resistance in EGFR. Bioorg. Med. Chem., 2008, 16(7), 3482-3488.
[http://dx.doi.org/10.1016/j.bmc.2008.02.053] [PMID: 18316192]
[33]
Denny, W.A. The 4-anilinoquinazoline class of inhibitors of the erbB family of receptor tyrosine kinases. Farmaco, 2001, 56(1-2), 51-56.
[http://dx.doi.org/10.1016/S0014-827X(01)01026-6] [PMID: 11347967]
[34]
Engelman, J.A.; Zejnullahu, K.; Gale, C.M.; Lifshits, E.; Gonzales, A.J.; Shimamura, T.; Zhao, F.; Vincent, P.W.; Naumov, G.N.; Bradner, J.E.; Althaus, I.W.; Gandhi, L.; Shapiro, G.I.; Nelson, J.M.; Heymach, J.V.; Meyerson, M.; Wong, K.K.; Jänne, P.A. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res., 2007, 67(24), 11924-11932.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1885] [PMID: 18089823]
[35]
Bender, A.T.; Gardberg, A.; Pereira, A.; Johnson, T.; Wu, Y.; Grenningloh, R.; Head, J.; Morandi, F.; Haselmayer, P.; Liu-Bujalski, L. Ability of Bruton’s tyrosine kinase inhibitors to sequester y551 and prevent phosphorylation determines potency for inhibition of fc receptor but not B-cell receptor signaling. Mol. Pharmacol., 2017, 91(3), 208-219.
[http://dx.doi.org/10.1124/mol.116.107037] [PMID: 28062735]
[36]
Rex, E.B.; Kim, S.; Wiener, J.; Rao, N.L.; Milla, M.E.; DiSepio, D. Phenotypic approaches to identify inhibitors of b cell activation. J. Biomol. Screen., 2015, 20(7), 876-886.
[http://dx.doi.org/10.1177/1087057115585724] [PMID: 25948491]
[37]
Mohammadi, M.; Froum, S.; Hamby, J.M.; Schroeder, M.C.; Panek, R.L.; Lu, G.H.; Eliseenkova, A.V.; Green, D.; Schlessinger, J.; Hubbard, S.R. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J., 1998, 17(20), 5896-5904.
[http://dx.doi.org/10.1093/emboj/17.20.5896] [PMID: 9774334]
[38]
Liu, Q.; Sabnis, Y.; Zhao, Z.; Zhang, T.; Buhrlage, S.J.; Jones, L.H.; Gray, N.S. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol., 2013, 20(2), 146-159.
[http://dx.doi.org/10.1016/j.chembiol.2012.12.006] [PMID: 23438744]
[39]
Wissner, A.; Fraser, H.L.; Ingalls, C.L.; Dushin, R.G.; Floyd, M.B.; Cheung, K.; Nittoli, T.; Ravi, M.R.; Tan, X.; Loganzo, F. Dual irreversible kinase inhibitors: quinazoline-based inhibitors incorporating two independent reactive centers with each targeting different cysteine residues in the kinase domains of EGFR and VEGFR-2. Bioorg. Med. Chem., 2007, 15(11), 3635-3648.
[http://dx.doi.org/10.1016/j.bmc.2007.03.055] [PMID: 17416531]
[40]
Wissner, A.; Floyd, M.B.; Johnson, B.D.; Fraser, H.; Ingalls, C.; Nittoli, T.; Dushin, R.G.; Discafani, C.; Nilakantan, R.; Marini, J.; Ravi, M.; Cheung, K.; Tan, X.; Musto, S.; Annable, T.; Siegel, M.M.; Loganzo, F. 2-(Quinazolin-4-ylamino)-[1,4]benzoquinones as covalent-binding, irreversible inhibitors of the kinase domain of vascular endothelial growth factor receptor-2. J. Med. Chem., 2005, 48(24), 7560-7581.
[http://dx.doi.org/10.1021/jm050559f] [PMID: 16302797]
[41]
Temam, S.; Kawaguchi, H.; El-Naggar, A.K.; Jelinek, J.; Tang, H.; Liu, D.D.; Lang, W.; Issa, J.P.; Lee, J.J.; Mao, L. Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J. Clin. Oncol., 2007, 25(16), 2164-2170.
[http://dx.doi.org/10.1200/JCO.2006.06.6605] [PMID: 17538160]
[42]
Blair, J.A.; Rauh, D.; Kung, C.; Yun, C.H.; Fan, Q.W.; Rode, H.; Zhang, C.; Eck, M.J.; Weiss, W.A.; Shokat, K.M. Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat. Chem. Biol., 2007, 3(4), 229-238.
[http://dx.doi.org/10.1038/nchembio866] [PMID: 17334377]
[43]
Park, K.; Tan, E-H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C-H.; Lee, K.H.; Lu, S.; Shi, Y.; Kim, S-W.; Laskin, J.; Kim, D-W.; Arvis, C.D.; Kölbeck, K.; Laurie, S.A.; Tsai, C-M.; Shahidi, M.; Kim, M.; Massey, D.; Zazulina, V.; Paz-Ares, L. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol., 2016, 17(5), 577-589.
[http://dx.doi.org/10.1016/S1470-2045(16)30033-X] [PMID: 27083334]
[44]
Cross, D.A.E.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.V.; Ward, R.A.; Mellor, M.J.; Hughes, G.; Rahi, A.; Jacobs, V.N.; Red Brewer, M.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G.H.P.; Cantarini, M.; Kim, D.W.; Ranson, M.R.; Pao, W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov., 2014, 4(9), 1046-1061.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0337] [PMID: 24893891]
[45]
Zhou, W.; Ercan, D.; Chen, L.; Yun, C.H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; Engen, J.R.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature, 2009, 462(7276), 1070-1074.
[http://dx.doi.org/10.1038/nature08622] [PMID: 20033049]
[46]
Jia, Y.; Juarez, J.; Li, J.; Manuia, M.; Niederst, M.J.; Tompkins, C.; Timple, N.; Vaillancourt, M.T.; Pferdekamper, A.C.; Lockerman, E.L.; Li, C.; Anderson, J.; Costa, C.; Liao, D.; Murphy, E.; DiDonato, M.; Bursulaya, B.; Lelais, G.; Barretina, J.; McNeill, M.; Epple, R.; Marsilje, T.H.; Pathan, N.; Engelman, J.A.; Michellys, P.Y.; McNamara, P.; Harris, J.; Bender, S.; Kasibhatla, S. EGF816 exerts anticancer effects in non-small cell lung cancer by irreversibly and selectively targeting primary and acquired activating mutations in the EGF receptor. Cancer Res., 2016, 76(6), 1591-1602.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2581] [PMID: 26825170]
[47]
Konagai, S.; Sakagami, H.; Yamamoto, H.; Tanaka, H.; Matsuya, T.; Mimasu, S.; Tomimoto, Y.; Mori, M.; Koshio, H.; Hirano, M.; Kuromitsu, S.; Takeuchi, M. ASP8273 selectively inhibits mutant EGFR signal pathway and induces tumor shrinkage in EGFR mutated tumor models. Cancer Res., 2015, 75.
[48]
Goto, Y.; Nokihara, H.; Murakami, H.; Shimizu, T.; Seto, T.; Krivoshik, A.P.; Keating, A.T.; Uegaki, K.; Takeda, K.; Komatsu, K.; Morita, S.; Fukuoka, M.; Nakagawa, K. ASP8273, a mutant-selective irreversible EGFR inhibitor in patients (pts) with NSCLC harboring EGFR activating mutations: Preliminary results of first-in-human phase I study in Japan. J. Clin. Oncol., 2015, 33(15)
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.8014]
[49]
Sakagami, H.; Konagai, S.; Yamamoto, H.; Tanaka, H.; Matsuya, T.; Mori, M.; Koshio, H.; Yuri, M.; Hirano, M.; Kuromitsu, S. ASP8273, a novel mutantselective irreversible EGFR inhibitor, inhibits growth of non-small cell lung cancer (NSCLC) cells with EGFR activating and T790M resistance mutations. Cancer Res., 2014, 74(19)
[50]
Yu, H.A.; Spira, A.; Horn, L.; Weiss, J.; West, H.; Giaccone, G.; Evans, T.; Kelly, R.J.; Desai, B.; Krivoshik, A.; Moran, D.; Poondru, S.; Jie, F.; Aoyama, K.; Keating, A.; Oxnard, G.R. A Phase I, dose escalation study of oral asp8273 in patients with non-small cell lung cancers with epidermal growth factor receptor mutations. Clin. Cancer Res., 2017, 23(24), 7467-7473.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1447] [PMID: 28954786]
[51]
Kourie, H.R.; Chaix, M.; Gombos, A.; Aftimos, P.; Awada, A. Pharmacodynamics, pharmacokinetics and clinical efficacy of neratinib in HER2-positive breast cancer and breast cancer with HER2 mutations. Expert Opin. Drug Metab. Toxicol., 2016, 12(8), 947-957.
[http://dx.doi.org/10.1080/17425255.2016.1198317] [PMID: 27284682]
[52]
Chan, A.; Delaloge, S.; Holmes, F.A.; Moy, B.; Iwata, H.; Harvey, V.J.; Robert, N.J.; Silovski, T.; Gokmen, E.; von Minckwitz, G.; Ejlertsen, B.; Chia, S.K.L.; Mansi, J.; Barrios, C.H.; Gnant, M.; Buyse, M.; Gore, I.; Smith, J., II; Harker, G.; Masuda, N.; Petrakova, K.; Zotano, A.G.; Iannotti, N.; Rodriguez, G.; Tassone, P.; Wong, A.; Bryce, R.; Ye, Y.; Yao, B.; Martin, M. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2016, 17(3), 367-377.
[http://dx.doi.org/10.1016/S1470-2045(15)00551-3] [PMID: 26874901]
[53]
Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[54]
Gonzales, A.J.; Hook, K.E.; Althaus, I.W.; Ellis, P.A.; Trachet, E.; Delaney, A.M.; Harvey, P.J.; Ellis, T.A.; Amato, D.M.; Nelson, J.M.; Fry, D.W.; Zhu, T.; Loi, C.M.; Fakhoury, S.A.; Schlosser, K.M.; Sexton, K.E.; Winters, R.T.; Reed, J.E.; Bridges, A.J.; Lettiere, D.J.; Baker, D.A.; Yang, J.; Lee, H.T.; Tecle, H.; Vincent, P.W. Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol. Cancer Ther., 2008, 7(7), 1880-1889.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2232] [PMID: 18606718]
[55]
Kuglstatter, A.; Wong, A.; Tsing, S.; Lee, S.W.; Lou, Y.; Villaseñor, A.G.; Bradshaw, J.M.; Shaw, D.; Barnett, J.W.; Browner, M.F. Insights into the conformational flexibility of Bruton’s tyrosine kinase from multiple ligand complex structures. Protein Sci., 2011, 20(2), 428-436.
[http://dx.doi.org/10.1002/pro.575] [PMID: 21280133]
[56]
Wang, Y.; Zhang, L.L.; Champlin, R.E.; Wang, M.L. Targeting Bruton’s tyrosine kinase with ibrutinib in B-cell malignancies. Clin. Pharmacol. Ther., 2015, 97(5), 455-468.
[http://dx.doi.org/10.1002/cpt.85] [PMID: 25669675]
[57]
Brown, J.R.; Sharman, J.P.; Harb, W.A.; Kelly, K.R.; Schreeder, M.T.; Sweetenham, J.W.; Barr, P.M.; Foran, J.M.; Gabrilove, J.L.; Kipps, T.J.; Ma, S.; O’Brien, S.M.; Evans, E.; Lounsbury, H.; Silver, B.A.; Singh, J.; Stiede, K.; Westlin, W.; Witowski, S.; Mahadevan, D. Phase Ib trial of AVL-292, a covalent inhibitor of Bruton’s tyrosine kinase (Btk), in chronic lymphocytic leukemia (CLL) and B-non-Hodgkin lymphoma (B-NHL). J. Clin. Oncol., 2012, 30(15)
[58]
Berglöf, A.; Hamasy, A.; Meinke, S.; Palma, M.; Krstic, A.; Månsson, R.; Kimby, E.; Österborg, A.; Smith, C.I. Targets for ibrutinib beyond B cell malignancies. Scand. J. Immunol., 2015, 82(3), 208-217.
[http://dx.doi.org/10.1111/sji.12333] [PMID: 26111359]
[59]
Kokabee, L.; Wang, X.; Sevinsky, C.J.; Wang, W.L.; Cheu, L.; Chittur, S.V.; Karimipoor, M.; Tenniswood, M.; Conklin, D.S. Bruton’s tyrosine kinase is a potential therapeutic target in prostate cancer. Cancer Biol. Ther., 2015, 16(11), 1604-1615.
[http://dx.doi.org/10.1080/15384047.2015.1078023] [PMID: 26383180]
[60]
Burger, J.A. Bruton’s tyrosine kinase (BTK) inhibitors in clinical trials. Curr. Hematol. Malig. Rep., 2014, 9(1), 44-49.
[http://dx.doi.org/10.1007/s11899-013-0188-8] [PMID: 24357428]
[61]
Wu, J.; Zhang, M.; Liu, D. Bruton tyrosine kinase inhibitor ONO/GS-4059: from bench to bedside. Oncotarget, 2017, 8(4), 7201-7207.
[http://dx.doi.org/10.18632/oncotarget.12786] [PMID: 27776353]
[62]
Yasuhiro, T.; Sawada, W.; Klein, C.; Kozaki, R.; Hotta, S.; Yoshizawa, T. Anti-tumor efficacy study of the Bruton’s tyrosine kinase (BTK) inhibitor, ONO/GS-4059, in combination with the glycoengineered type II anti-CD20 monoclonal antibody obinutuzumab (GA101) demonstrates superior in vivo efficacy compared to ONO/GS-4059 in combination with rituximab. Leuk. Lymphoma, 2017, 58(3), 699-707.
[http://dx.doi.org/10.1080/10428194.2016.1201567] [PMID: 27684575]
[63]
Yahiaoui, A.; Meadows, S.A.; Sorensen, R.A.; Cui, Z.H.; Keegan, K.S.; Brockett, R.; Chen, G.; Quéva, C.; Li, L.; Tannheimer, S.L. PI3Kδ inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kδ and BTK inhibitors. PLoS One, 2017, 12(2)e0171221
[http://dx.doi.org/10.1371/journal.pone.0171221] [PMID: 28178345]
[64]
Skaper, S.D.; Kee, W.J.; Facci, L.; Macdonald, G.; Doherty, P.; Walsh, F.S. The FGFR1 inhibitor PD 173074 selectively and potently antagonizes FGF-2 neurotrophic and neurotropic effects. J. Neurochem., 2000, 75(4), 1520-1527.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751520.x] [PMID: 10987832]
[65]
Skaper, S.D.; Kee, W.J.; Facci, L.; MacDonald, C.; Doherty, P.; Walsh, F.S. The FGFR1 inhibitor PD 173074 selectively and potently antagonises the neurotrophic and neurotropic effects of FGF-2. Eur. J. Neurosci., 2000, 12, 268-268.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751520.x] [PMID: 10987832]
[66]
Zhou, W.; Hur, W.; McDermott, U.; Dutt, A.; Xian, W.; Ficarro, S.B.; Zhang, J.; Sharma, S.V.; Brugge, J.; Meyerson, M.; Settleman, J.; Gray, N.S. A structure-guided approach to creating covalent FGFR inhibitors. Chem. Biol., 2010, 17(3), 285-295.
[http://dx.doi.org/10.1016/j.chembiol.2010.02.007] [PMID: 20338520]
[67]
Tan, L.; Wang, J.; Tanizaki, J.; Huang, Z.; Aref, A.R.; Rusan, M.; Zhu, S.J.; Zhang, Y.; Ercan, D.; Liao, R.G.; Capelletti, M.; Zhou, W.; Hur, W.; Kim, N.; Sim, T.; Gaudet, S.; Barbie, D.A.; Yeh, J.R.J.; Yun, C.H.; Hammerman, P.S.; Mohammadi, M.; Jänne, P.A.; Gray, N.S. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc. Natl. Acad. Sci. USA, 2014, 111(45), E4869-E4877.
[http://dx.doi.org/10.1073/pnas.1403438111] [PMID: 25349422]
[68]
Hoi, P.M.; Li, S.; Vong, C.T.; Tseng, H.H.; Kwan, Y.W.; Lee, S.M. Recent advances in structure-based drug design and virtual screening of VEGFR tyrosine kinase inhibitors. Methods, 2015, 71, 85-91.
[http://dx.doi.org/10.1016/j.ymeth.2014.09.004] [PMID: 25239735]
[69]
Smith, N.R.; Baker, D.; James, N.H.; Ratcliffe, K.; Jenkins, M.; Ashton, S.E.; Sproat, G.; Swann, R.; Gray, N.; Ryan, A.; Jurgensmeier, J.M.; Womack, C. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clinical cancer research : an official journal of the American Association for Cancer Research, 2010, 16, (14), 3548-3561.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2797] [PMID: 20606037]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy