[1]
Dodson, G. Protein folding: Deciphering the second half of the genetic code. Trends Biochem. Sci., 1991, 16, 76-77.
[2]
Ramos, C.H.I.; Ferreira, S.T. Protein folding, misfolding and aggregation: Evolving concepts and conformational diseases. Protein Pept. Lett., 2005, 12, 213-222.
[3]
Dill, K.A.; MacCallum, J.L. The protein-folding problem, 50 years on. Science, 2012, 338(6110), 1042-1046.
[4]
Baldwin, R.L.; Rose, G.D. Molten globules, entropy-driven conformational change and protein folding. Curr. Opin. Struct. Biol., 2013, 23(1), 4-10.
[5]
Huang, P.S.; Boyken, S.E.; Baker, D. The coming of age of de novo protein design. Nature, 2016, 537(7620), 320-327.
[6]
Uversky, V.N.; Fink, A.L. Conformational constraints for amyloid fibrillation: The importance of being unfolded. Biochim. Biophys. Acta, 2004, 1698(2), 131-153.
[7]
Ferreira, S.T.; Vieira, M.N.; Felice, F.G. Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life, 2007, 59(4-5), 332-345.
[8]
Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell, 2012, 148(6), 1188-1203.
[9]
Knowles, T.P.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 384-396.
[10]
de Oliveira, G.A.P.; Rangel, L.P.; Costa, D.C.F.; Silva, J.L. Misfolding, aggregation, and disordered segments in c-Abl and p53 in human cancer. Front. Oncol., 2015, 5, 97.
[11]
Douglas, P.M.; Summers, D.W.; Cyr, D.M. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways. Prion, 2009, 3(2), 51-58.
[12]
Morimoto, I.R. The heat shock response: Systems biology of proteotoxic stress in aging and disease. Cold Spring Harb. Symp. Quant. Biol., 2011, 76, 91-99.
[13]
Tiroli-Cepeda, A.; Ramos, C.H.I. An overview of the role of molecular chaperones in protein homeostasis. Protein Pept. Lett., 2011, 18, 101-109.
[14]
Kim, Y.E.; Hipp, M.S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F.U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem., 2013, 82, 323-355.
[15]
Dubnikov, T.; Ben-Gedalya, T.; Cohen, E. Protein quality control in health and disease. Cold Spring Harb. Perspect. Biol., 2017, 9(3), a023523.
[16]
Fink, A.L. Chaperone-mediated protein folding. Physiol. Rev., 1999, 79, 425-449.
[17]
Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature, 2011, 475, 324-332.
[18]
Doyle, S.M.; Genest, O.; Wickner, S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat. Rev. Mol. Cell Biol., 2013, 14(10), 617-629.
[19]
Priya, S.; Sharma, S.K.; Goloubinoff, P. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett., 2013, 587, 1981-1987.
[20]
Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol., 2013, 14(10), 630-642.
[21]
Mokry, D.Z.; Abrahao, J.; Ramos, C.H.I. Disaggregases, molecular chaperones that resolubilize protein aggregates. Natl. Acad. Bras. Ciênc., 2015, 87(2), 1273-1292.
[22]
Lindquist, S.; Craig, E.A. The heat-shock proteins. Annu. Rev. Genet., 1988, 22, 631-677.
[23]
Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell, 1998, 92, 351-366.
[24]
Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 2002, 295, 1852-1858.
[25]
Lee, S.; Tsai, F.T.F. Molecular chaperones in protein quality control. J. Biochem. Mol. Biol., 2005, 38, 259-265.
[26]
Ramos, C.H.I. In: Protein Misfolding; O’Doherty, C.B.; Byrne, A.C., Eds.; Nova Science Publishers: New York, 2008.
[27]
Mayer, M.P. Gymnastics of molecular chaperones. Mol. Cell, 2010, 39, 321-331.
[28]
Parsell, A.D.; Kowal, A.S.; Singer, A.M.; Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature, 1994, 372, 475-478.
[29]
Zietkiewicz, S.; Krzewska, J.; Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem., 2004, 279, 44376-44383.
[30]
Shorter, J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One, 2011, 6, e26319.
[31]
Rampelt, H.; Kirstein-Miles, J.; Nillegoda, N.B.; Chi, K.; Scholz, S.R.; Morimoto, R.I.; Bukau, B. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J., 2012, 31, 4221-4235.
[32]
Mattoo, R.U.; Sharma, S.K.; Priya, S.; Finka, A.; Goloubinoff, P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J. Biol. Chem., 2013, 288, 21399-21411.
[33]
Wegele, H.; Müller, L.; Buchner, J. Hsp70 and Hsp90-a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol., 2004, 151, 1-44.
[34]
Gava, L.; Ramos, C.H.I. Human 90 kDa heat shock protein Hsp90 as a target for cancer therapeutics. Curr. Chem. Biol., 2009, 3, 330-341.
[35]
da Silva, K.P.; Borges, J.C. The molecular chaperone Hsp70 family members function by a bidirectional heterotrophic allosteric mechanism. Protein Pept. Lett., 2011, 18(2), 132-142.
[36]
da Silva, V.C.; Ramos, C.H.I. The network interaction of human 90 kDa heat shock protein Hsp90: A target for cancer therapeutics. J. Proteomics, 2012, 75, 2790-2802.
[37]
Batista, F.A.; Gava, L.M.; Pinheiro, G.M.; Ramos, C.H.; Borges, J.C. From conformation to interaction: Techniques to explore the Hsp70/Hsp90 network. Curr. Protein Pept. Sci., 2015, 16(8), 735-753.
[38]
Garrido, C.; Paul, C.; Seigneuric, R.; Kampinga, H.H. The small heat shock proteins family: The long forgotten chaperones. Int. J. Biochem. Cell Biol., 2012, 44(10), 1588-1592.
[39]
Haslbeck, M.; Vierling, E. A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. J. Mol. Biol., 2015, 427(7), 1537-1548.
[40]
Morimoto, R.I. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev., 1998, 12, 3788-3796.
[41]
Fujimoto, M.; Nakai, A. The heat shock factor family and adaptation to proteotoxic stress. FEBS J., 2010, 277, 4112-4125.
[42]
Anckar, J.; Sistonen, L. Regulation of HSF1 function in the heat stress response: Implications in aging and disease. Annu. Rev. Biochem., 2011, 80, 1089-1115.
[43]
Miozzo, F.; Sabéran-Djoneidi, D.; Mezger, V. HSFs, stress sensors and sculptors of transcription compartments and epigenetic landscapes. J. Mol. Biol., 2015, 427(24), 3793-3781.
[44]
Akerfelt, M.; Morimoto, R.I.; Sistonen, L. Heat shock factors: Integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol., 2010, 11(8), 545-555.
[45]
Tower, J. Heat shock proteins and Drosophila aging. Exp. Geront., 2011, 46(5), 355-562.
[46]
Zuo, J.; Baler, R.; Dahl, G.; Voellmy, R. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol., 1994, 14(11), 7557-7568.
[47]
Zuo, J.; Rungger, D.; Voellmy, R. Multiple layers of regulation of human heat shock transcription factor 1. Mol. Cell. Biol., 1995, 15(8), 4319-4330.
[48]
Littlefield, O.; Nelson, H.C. A new use for the “wing” of the “winged” helix-turn-helix motif in the HSF-DNA cocrystal. Nat. Struct. Mol. Biol., 1999, 6(5), 464-470.
[49]
Vuister, G.W.; Kim, S.J.; Orosz, A.; Marquardt, J.; Wu, C.; Bax, A. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat. Struct. Mol. Biol., 1994, 1(9), 605-614.
[50]
Perisic, O.; Xiao, H.; Lis, J.T. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell, 1989, 59(5), 797-806.
[51]
Kroeger, P.E.; Morimoto, R.I. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol. Cell. Biol., 1994, 14(11), 7592-7603.
[52]
Xiao, H.; Perisic, O.; Lis, J.T. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell, 1991, 64(3), 585-593.
[53]
Peteranderl, R.; Nelson, H.C.M. Trimerization of the heat shock transcription factor by a triple-stranded alpha-helical coiled-coil. Biochemistry, 1992, 31(48), 12272-12276.
[54]
Peteranderl, R.; Rabenstein, M.; Shin, Y.K.; Liu, C.W.; Wemmer, D.E.; King, D.S.; Nelson, H.C. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochem., 1999, 38(12), 3559-3569.
[55]
Vihervaara, A.; Sistonen, L. HSF1 at a glance. J. Cell Sci., 2014, 127(2), 261-266.
[56]
Rabindran, S.K.; Haroun, R.I.; Clos, J.; Wisniewski, J.; Wu, C. Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science, 1993, 259(5092), 230-234.
[57]
Green, M.; Schuetz, T.J.; Sullivan, E.K.; Kingston, R.E. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol. Cell. Biol., 1995, 15(6), 3354-3362.
[58]
Abravaya, K.; Myers, M.P.; Murphy, S.P.; Morimoto, R.I. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev., 1992, 6(7), 1153-1164.
[59]
Shi, Y.; Mosser, D.D.; Morimoto, R.I. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev., 1998, 12(5), 654-666.
[60]
Morimoto, R.I. Dynamic remodeling of transcription complexes by molecular chaperones. Cell, 2002, 110(3), 281-284.
[61]
Zou, J.; Guo, Y.; Guettouche, T.; Smith, D.F.; Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 1998, 94(4), 471-480.
[62]
Denegri, M.; Moralli, D.; Rocch, M.; Biggiogera, M.; Raimondi, E.; Cobianchi, F.; De Carli, L.; Riva, S.; Biamonti, G. Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol. Biol. Cell, 2002, 13(6), 2069-2079.
[63]
Jolly, C.; Konecny, L.; Grady, D.L.; Kutskova, Y.; Cotto, J.J.; Morimoto, R.I.; Vourc’h, C. In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J. Cell Biol., 2002, 156(5), 775-781.
[64]
Baler, R. Heat shock gene regulation by nascent polypeptides and denatured proteins: Hsp70 as a potential autoregulatory factor. J. Cell Biol., 1992, 117(6), 1151-1159.
[65]
Mosser, D.D.; Duchaine, J.; Massie, B. The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol. Cell. Biol., 1993, 13(9), 5427-5438.
[66]
Raychaudhuri, S.; Loew, C.; Körner, R.; Pinkert, S.; Theis, M.; Hayer-Hartl, M.; Buchholz, F.; Hartl, F.U. Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell, 2014, 156, 975-985.
[67]
Mendillo, M.L.; Santagata, S.; Koeva, M. Bel,l G.W.; Hu, R.; Tamimi, R.M.; Fraenkel, E.; Ince, T.A.; Whitesell, L.; Lindquist, S. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell, 2012, 150, 549-562.
[68]
Akerfelt, M.; Trouillet, D.; Mezger, V.; Sistonen, L. Heat shock factors at a crossroad between stress and development. Ann. N. Y. Acad. Sci., 2007, 1113(1), 15-27.
[69]
Birch-Machin, I.; Gao, S.; Huen, D.; McGirr, R.; White, R.A.H.; Russell, S. Genomic analysis of heat-shock factor targets in Drosophila. Genome Biol. Evol., 2005, 6(7), R63.
[70]
Hahn, J.; Hu, Z.; Thiele, D.J.; Iyer, V.R. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Society, 2004, 24(12), 5249-5256.
[71]
Nakai, A. Heat shock transcription factors and sensory placode development. BMB Rep., 2009, 42(10), 631-635.
[72]
Trinklein, N.D.; Murray, J.I.; Hartman, S.J.; Botstein, D.; Myers, R.M. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol. Biol. Cell, 2004, 15(3), 1254-1261.
[73]
Vihervaara, A.; Sergelius, C.; Vasara, J.; Blom, M.A.H.; Elsing, A.N.; Roos-Mattjus, P.; Sistonen, L. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc. Nat. Acad. Sci. USA, 2013, 110(36), e3388-e3397.
[74]
Carnemolla, A.; Labbadia, J.P.; Lazell, H.; Neueder, A.; Moussaoui, S.; Bates, G.P. Contesting the dogma of an age-related heat shock response impairment: Implications for cardiac-specific age-related disorders. Hum. Mol. Gen., 2014, 23(14), 3641-3656.
[75]
Demirovic, D.; de Toda, I.M.; Nizard, C.; Rattan, S.I.S. Differential translocation of heat shock factor-1 after mild and severe stress to human skin fibroblasts undergoing aging in vitro. J. Cell Commun. Signal., 2014, 8(4), 333-339.
[76]
Gelmedin, V.; Delaney, A.; Jennelle, L.; Hawdon, J.M. Expression profile of heat shock response factors during hookworm larval activation and parasitic development. Mol. Biochem. Parasitol., 2015, 202(1), 1-14.
[77]
Hsu, A.L.; Murphy, C.T.; Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 2003, 300(5622), 1142-1145.
[78]
Kern, A.; Ackermann, B.; Clement, A.M.; Duerk, H.; Behl, C. HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS One, 2010, 5(1), e8568.
[79]
Maheshwari, M.; Bhutani, S.; Das, A.; Mukherjee, R.; Sharma, A.; Kino, Y.; Nukina, N.; Jana, N.R. Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington’s disease. Hum. Mol. Gen., 2013, 23(10), 2737-2751.
[80]
Morley, J.F.; Morimoto, R.I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell, 2004, 15(2), 657-664.
[81]
Walker, G.A.; Thompson, F.J.; Brawley, A.; Scanlon, T.; Devaney, E. Heat shock factor functions at the convergence of the stress response and developmental pathways in Caenorhabditis elegans. FASEB J., 2003, 17(13), 1960-1962.
[82]
Sorger, P.K.; Pelham, H.R. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell, 1998, 54(6), 855-864.
[83]
Hietakangas, V.; Ahlskog, J.K.; Jakobsson, A.M.; Hellesuo, M.; Sahlberg, N.M.; Holmberg, C.I.; Mikhailov, A.; Palvimo, J.J.; Pirkkala, L.; Sistonen, L. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell. Biol., 2003, 23(8), 2953-2968.
[84]
Westerheide, S.D.; Anckar, J.; Stevens, S.M.J.; Sistonen, L.; Morimoto, R.I. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science, 2009, 323(5917), 1063-1066.
[85]
Kim, E.; Wang, B.; Sastry, N.; Nelson, P.T.; Cai, H.; Liao, F.F. NEDD4-mediated HSF1 degradation underlies α-synucleinopathy. Hum. Mol. Gen., 2016, 25(2), 211-222.
[86]
Kline, M.P.; Morimoto, R.I. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cel. Biol., 1997, 17(4), 2107-2115.
[87]
Knauf, U.; Newton, E.M.; Kyriakis, J.; Kingston, R.E. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev., 1996, 10(21), 2782-2793.
[88]
Budzyński, M.A.; Puustinen, M.C.; Joutsen, J.; Sistonen, L. Uncoupling stress-inducible phosphorylation of heat shock factor 1 from its activation. Mol. Cell. Biol., 2015, 35(14), 2530-2540.
[89]
Geiss-Friedlander, R.; Melchior, F. Concepts in sumoylation: A decade on. Nat. Rev. Mol. Cell Biol., 2007, 8(12), 947-956.
[90]
Hietakangas, V.; Anckar, J.; Blomster, H.A.; Fujimoto, M.; Palvimo, J.J.; Nakai, A.; Sistonen, L. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Nat. Acad. Sci. USA, 2006, 103(1), 45-50.
[91]
Zelin, E.; Freeman, B.C. Lysine deacetylases regulate the heat shock response including the age-associated impairment of HSF1. J. Mol. Biol., 2015, 427(7), 1644-1654.
[92]
Zelin, E.; Zhang, Y.; Toogun, O.A.; Zhong, S.; Freeman, B.C. The p23 molecular chaperone and GCN5 acetylase jointly modulate protein-DNA dynamics and open chromatin status. Mol. Cell, 2012, 48(3), 459-470.
[93]
Calderwood, S.K. HSF1, a versatile factor in tumorogenesis. Curr. Mol. Med., 2012, 12(9), 1102-1107.
[94]
Ciocca, D.R.; Arrigo, A.P.; Calderwood, S.K. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: An update. Arch. Toxicol., 2013, 87(1), 19-48.
[95]
Dai, C.; Santagata, S.; Tang, Z.; Shi, J.; Cao, J.; Kwon, H.; Bronson, R.T.; Whitesell, L.; Lindquist, S. Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J. Clin. Invest., 2012, 122(10), 3742-3754.
[96]
Dai, C.; Whitesell, L.; Rogers, A.B.; Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell, 2007, 130(6), 1005-1018.
[97]
Santagata, S.; Mendillo, M.L.; Tang, Y.; Subramanian, A.; Perley, C.C.; Roche, S.P.; Wong, B.; Narayan, R.; Kwon, H.; Amon, A.; Golub, T.R.; Porco, J.A.J.; Whitesell, L.; Lindquist, S. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science, 2013, 341(6143), 1238303.
[98]
Vydra, N.; Toma, A.; Widlak, W. Pleiotropic role of HSF1 in neoplastic transformation. Curr. Cancer Drug Targets, 2014, 14(2), 144-155.
[99]
Kenyon, C.J. The genetics of ageing. Nature, 2010, 464(7288), 504-512.
[100]
López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217.
[101]
Sóti, C.; Csermely, P. Molecular chaperones and the aging process. Biogerontology, 2000, 1(3), 225-233.
[102]
Labbadia, J.; Morimoto, R.I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem., 2015, 84(1), 435-464.
[103]
Liang, V.; Ullrich, M.; Lam, H.; Chew, Y.L.; Banister, S.; Song, X.; Zaw, T.; Kassiou, M.; Gotz, J.; Nicholas, H.R. Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome. Cell. Mol. Life Sci., 2014, 71(17), 3339-3361.
[104]
Ben-Zvi, A.; Miller, E.A.; Morimoto, R.I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Nat. Acad. Sci. USA, 2009, 106(35), 14914-14919.
[105]
Taylor, R.C.; Dillin, A. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Bio., 2011, 3, a00444.
[106]
Koga, H.; Kaushik, S.; Cuervo, A.M. Protein Homeostasis and Aging: The importance of exquisite quality control. Ageing Res. Rev., 2011, 10(2), 205-215.
[107]
Chai, Y.; Koppenhafer, S.L.; Shoesmith, S.J.; Perez, M.K.; Paulson, H.L. Evidence for proteasome involvement in polyglutamine disease: Localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Gen., 1999, 8(4), 673-682.
[108]
Cummings, C.J.; Mancini, M.A.; Antalffy, B.; DeFranco, D.B.; Orr, H.T.; Zoghbi, H.Y. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet., 1998, 19(2), 148-154.
[109]
Jana, N.R.; Tanaka, M.; Wang, G.H.; Nukina, N. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: Their role in suppression of aggregation and cellular toxicity. Hum. Mol. Gen., 2000, 9(13), 2009-2018.
[110]
Steele, A.D.; Hutter, G.; Jackson, W.S.; Heppner, F.L.; Borkowski, A.W.; King, O.D.; Raymond, G.J.; Aguzzi, A.; Lindquist, S. Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease. Proc. Nat. Acad. Sci. USA, 2008, 105(36), 13626-13631.
[111]
Tomita, T.; Hamazaki, J.; Hirayama, S.; McBurney, M.W.; Yashiroda, H.; Murata, S. Sirt1-deficiency causes defective protein quality control. Sci. Rep., 2015, 5, 12613.