[1]
Sadock, B.J.; Sadock, V.A. Çeviri editörü Bozkurt A. Kaplan &
Sadock Klinik Psikiyatri. 4.baskı İstanbul: Güneş Tıp Kitapevleri 2009.
[2]
Arinami, T.; Hamaguchi, H.; Itokawa, M.; Enguchi, H.; Tagaya, H.; Yano, S.; Shimizu, H. Association of dopamine D2 receptor molecular variant with schizophrenia. Lancet, 1994, 343(8899), 703-704.
[3]
Kane, J.M.; Correll, C.U. Pharmacologic treatment of schizophrenia. Dialogues Clin. Neurosci., 2010, 12(3), 345.
[4]
Van Os, J.; Kapur, S. Schizophrenia. Lancet, 2009, 374, 635-645.
[5]
Hennekens, C.H.; Hennekens, A.R.; Hollar, D.; Casey, D.E. Schizophrenia and increased risks of cardiovascular disease. Am. Heart J., 2005, 150, 1115-1121.
[6]
Saha, S.; Chant, D.; McGrath, J. A systematic review of mortality in schizophrenia: Is the differential mortality gap worsening over time. Arch. Gen. Psychiatry, 2007, 64, 1123-1131.
[7]
Lehman, A.F.; Lieberman, J.A.; Dixon, L.B.; McGlashan, T.H.; Miller, A.L.; Perkins, D.O.; Cook, I. Practice guideline for the treatment of partients with schizophrenia. Am. J. Psychiatry, 2004, 161.
[8]
De Hert, M.; Hudyana, H.; Dockx, L.; Bernagie, C.; Sweers, K.; Tack, J.; Leucht, S.; Peuskens, J. Second-generation antipsychotics and constipation: A review of the literature. Eur. Psychiatry, 2011, 26, 34-44.
[9]
Patteet, L.; Morrens, M.; Maudens, K.E.; Niemegeers, P.; Sabbe, B.; Neels, H. Therapeutic drug monitoring of common antipsychotics. Ther. Drug Monit., 2012, 34, 629-651.
[10]
Patteet, L.; Cappelle, D.; Maudens, K.E.; Crunelle, C.L.; Sabbe, B.; Neels, H. Advances in detection of antipsychotics in biological matrices. Clin. Chim. Acta, 2015, 441, 11-22.
[11]
López-Muñoz, F.; Alamo, C.; Cuenca, E.; Shen, W.W.; Clervoy, P.; Rubio, G. History of the discovery and clinical introduction of chlorpromazine. Ann. Clin. Psychiatry, 2005, 17(3), 113-135.
[12]
Marder, S.R.; Van Kammen, D.P. Dopamine Recepto Antagonists in: Comprehensive Textbook of Psychiatry: Sadock, B.J; Sadock, V.A., Ed.; Lippincott Williams&Wilkins: Philadelphia, 2000, pp. 2356-2376.
[13]
Lieberman, J.A. Understanding the mechanism of action of atypical antipsychotic drugs. Br. J. Psychiatry, 1993, 163(Suppl. 22), 7-18.
[14]
Saunders, J.C. Lasker Award: Priority Claim. JAMA, 1965, 191(10), 865-865.
[15]
Marder, S.R.; Van Putten, T. Antipsychotic Medications. In:
Schatzberg, A.F.; Nemeroff, C.B.; Eds. Textbook of PsychopharmacologyAmerican Psychiatric Pres; , 1995. 247-261
[17]
Coyle, J.T. Glutamate and schizophrenia: Beyond the dopamine hypothesis. Cell. Mol. Neurobiol., 2006, 26, 365.
[18]
Karam, C.S.; Ballon, J.S.; Bivens, N.M.; Freyberg, Z.; Girgis, R.R.; Lizardi-Ortiz, J.E.; Javitch, J.A. Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends Pharmacol. Sci., 2010, 31, 381.
[19]
Meltzer, H.Y.; Li, Z.; Kaneda, Y.; Ichikawa, J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27, 1159.
[20]
Danna, C.L.; Elmer, G.I. Disruption of conditioned reward association by typical and atypical antipsychotics. Pharmacol. Biochem. Behav., 2010, 96(1), 40-47.
[21]
Kaplan, H.I.; Sadock, B.J. Schizophrenia. In: Synopsis of Psychiatry, 8. baskı; Baltimore Williams & Wilkins, 1998; pp. 456-492.
[22]
Miyamoto, S.; Duncan, G.E.; Marx, C.E.; Lieberman, J.A. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry, 2005, 10(1), 79.
[23]
Buckley, P.F.; Meltzer, H.Y. Treatment of schizophrenia. In: Textbook of Psychopharmacology: Schatzberg, A.F.; Nemeroff, C.B; Eds, Washington American Psychiatric Press, 1995; pp. 615-639.
[24]
The British Pharmacopeia, The Stationary Office, vol. 2, London. 2010. pp. 1295-1297.
[25]
Banh, H.L. Management of delirium in adult critically ill patients: an overview. Pharm. Pharmaceut. Sci., 2012, 15(4), 499-509.
[26]
Seeman, P. Atypical antipsychotics: mechanism of action. Can. J. Psychiatry, 2002, 47(1), 27-38.
[27]
Wu, S.; Xing, Q.; Gao, R.; Li, X.; Gu, N.; Feng, G.; He, L. Response to chlorpromazine treatment may be associated with polymorphisms of the DRD2 gene in Chinese schizophrenic patients. Neurosci. Lett., 2005, 376(1), 1-4.
[28]
Sean, C.S. The extra pharmacopoeia The complete drug reference; London Pharmaceutical Press, 2001.
[29]
Brittain, H. G. Profiles of drug substances, excipients and related
methodology (Vol. 41). Academic Press. 2016.
[30]
Colvin, C.L.; Tankanow, R.M. Pimozide: use in Tourette’s Syndrome. Drug Intell. Clin. Pharm., 1985, 19, 421-424.
[31]
Thanacoody, H.K.R. Thioridazine: The good and the bad. Rec. Pat. AntiInfect. Drug. Discov., 2011, 6, 92-98.
[32]
Breier, A.; Berg, P.H. The psychosis of schizophrenia: prevalence, response to atypical antipsychotics, and prediction of outcome. Biol. Psychiatry, 1999, 46, 361.
[33]
Leucht, S.; Kissling, W.; Davis, J.M. Second-generation antipsychotics for schizophrenia: can we resolve the conflict? Psychol. Med., 2009, 39, 1591-1602.
[34]
Kasteng, F.; Eriksson, J.; Sennfalt, K.; Lindgren, P. Metabolic effects and cost effectiveness of aripiprazole versus olanzapine in schizophrenia and bipolar disorder. Acta Psychiatr. Scand., 2011, 124, 214-225.
[35]
Cheer, S.M.; Wagstaff, A.J. Quetiapine −A review of its use in the management of schizophrenia. CNS Drugs, 2004, 18(3), 173-199.
[36]
Tantawy, M.A.; Hassan, N.Y.; Elragehy, N.A.; Abdelkawy, M. Simultaneous determination of olanzapine and fluoxetine hydrochloride in capsules by spectrophotometry, TLC-spectrodensitometry and HPLC. J. Adv. Res., 2013, 4(2), 173-180.
[37]
Abel, K.; Howard, L. Schizophrenia, psychopharmacology and pregnancy. In: Galbally, M.; Snellen, M.; Lewis, A. Eds.Psychopharmacology and Pregnancy: Treatment Efficacy, Risks, and Guidelines; Springer: Heidelberg, 2014.
[38]
Singh, K.P.; Singh, M.K.; Singh, M. Effects of prenatal exposure to antipsychotic risperidone on developmental neurotoxicity, apoptotic neurodegeneration and neurobehavioral sequelae in rat offspring. Int. J. Dev. Neurosci., 2016, 52, 13-23.
[39]
Brunton, L.L.; Lazo, J.S.; Parker, K.L. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 11th ed; McGraw-Hill: New York, 2006.
[40]
Jagodic, H.K.; Agius, M.; Pregelj, P. Psychopharmacotherapy prescription and suicidal behaviour. Psychiatr. Danub., 2013, 25, S324-S328.
[41]
Fakra, E.; Azorin, J.M. Clozapine for the treatment of schizophrenia. Expert Opin. Pharmacother., 2012, 13, 1923-1935.
[42]
Wiebelhaus, J.M.; Vunck, S.A.; Meltzer, H.Y.; Porter, J.H. Discriminative stimulus properties of N-desmethylclozapine, the major active metabolite of the atypical antipsychotic clozapine, in C57BL/6 mice. Behav. Pharmacol., 2012, 23, 262-270.
[43]
Özkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33(3), 155-181.
[44]
Özkan, S.A.; Uslu, B.; Sentürk, Z. Electroanalytical characteristics of amisulpride and voltammetric determination of the drug in pharmaceuticals and biological media. Electroanalysis, 2004, 16(3), 231-237.
[45]
Kurbanoglu, S.; Dogan-Topal, B.; Hlavata, L.; Labuda, J.; Ozkan, S.A.; Uslu, B. Electrochemical investigation of an interaction of the antidepressant drug aripiprazole with original and damaged calf thymus dsDNA. Electrochim. Acta, 2015, 169, 233-240.
[46]
Aşangil, D.; Taşdemir, İ.H.; Kılıc, E. Adsorptive stripping voltammetric methods for determination of aripiprazole. J. Pharm. Anal., 2012, 2(3), 193-199.
[47]
Merli, D.; Dondi, D.; Ravelli, D.; Tacchini, D.; Profumo, A. Electrochemistry and analytical determination of aripiprazole and octoclothepin at glassy carbon electrode. J. Electroanal. Chem., 2013, 711, 1-7.
[48]
Shrivastava, R.; Saxena, S.; Satsangee, S.P.; Jain, R. Graphene/TiO2/polyaniline nanocomposite based sensor for the electrochemical investigation of aripiprazole in pharmaceutical formulation. Ionics, 2015, 21(7), 2039-2049.
[49]
Saraji, M.; Bidgoli, A.A.H.; Ensafi, A.A.; Heydari-Bafrooei, E.; Farajmand, B. Highly sensitive determination of chlorpromazine by electrochemically treated pencil graphite fiber as both solid-phase microextraction fiber and working electrode for use in voltammetry method. Anal. Methods, 2013, 5(19), 5024-5030.
[50]
Zhang, Z.Q.; Chen, Z.G.; Yang, Z.G.; Zhang, H. Adsorptive voltammetric determination of chlorpromazine in the presence of Triton X-100. Microchem. J., 1996, 53(3), 282-289.
[51]
Mielech‐Łukasiewicz, K.; Puzanowska‐Tarasiewicz, H.; Panuszko, A. Electrochemical oxidation of phenothiazine derivatives at glassy carbon electrodes and their differential pulse and square‐wave voltammetric determination in pharmaceuticals. Anal. Lett., 2008, 41(5), 789-805.
[52]
Hajian, A.; Rafati, A.A.; Afraz, A.; Najafi, M. Electrosynthesis of polythiophene nanowires and their application for sensing of chlorpromazine. J. Electrochem. Soc., 2014, 161(9), B196-B200.
[53]
Amini, N.; Shamsipur, M.; Gholivand, M.B.; Naderi, K. Electrocatalytic and new electrochemical properties of chlorpromazine in to silica NPs/chloropromazine/Nafion nanocomposite: Application to nitrite detection at low potential. Microchem. J., 2017, 131, 43-50.
[54]
Amini, N.; Shamsipur, M.; Gholivand, M.B. Electrocatalytic oxidation of sulfide and electrochemical behavior of chloropromazine based on organic-inorganic hybrid nanocomposite. J. Mol. Catal.A Chem., 2015, 396, 245-253.
[55]
Ensafi, A.A.; Heydari, E. Determination of some phenothiazines compounds in pharmaceuticals and human body fluid by electrocatalytic oxidation at a glassy carbon electrode using methylene blue as a mediator. Anal. Lett., 2008, 41(13), 2487-2502.
[56]
Salimi, A.; Amini, N.; Naderi, K.; Ghafuori, H. Experimental and theoretical studies on electrocatalytic oxidation of arsenic (III) and iron (II) using chlorpromazine: Electrochemical and mechanistic study by digital simulation in liquid phase. J. Mol. Liq., 2017, 233, 100-105.
[57]
Parvin, M.H.; Golivand, M.B.; Najafi, M.; Shariaty, S.M. Carbon paste electrode modified with cobalt nanoparticles and its application to the electrocatalytic determination of chlorpromazine. J. Electroanal. Chem., 2012, 683, 31-36.
[58]
Jankowska-Śliwińska, J.; Dawgul, M.; Pijanowska, D.G. DNA intercalation-based amperometric biosensor for chlorpromazine detection. Procedia Eng., 2014, 87, 747-750.
[59]
Ni, Y.; Wang, L.; Kokot, S. Voltammetric determination of chlorpromazine hydrochloride and promethazine hydrochloride with the use of multivariate calibration. Anal. Chim. Acta, 2001, 439(1), 159-168.
[60]
Petković, B.B.; Kuzmanović, D.; Dimitrijević, T.; Krstić, M.P.; Stanković, D.M. Novel Strategy for Electroanalytical Detection of Antipsychotic Drugs Chlorpromazine and Thioridazine; Possibilities for Simultaneous Determination. Int. J. Electrochem. Sci., 2017, 12, 3709-3720.
[61]
Unnikrishnan, B.; Hsu, P.C.; Chen, S.M. A multipurpose voltammetric sensor for the determination of chlorpromazine in presence of acetaminophen, uric acid, dopamine and ascorbic acid. Int. J. Electrochem. Sci., 2012, 7, 11414-11425.
[62]
Parvin, M.H. Graphene paste electrode for detection of chlorpromazine. Electrochem. Commun., 2011, 13(4), 366-369.
[63]
Karimi, M.A.; Hatefi-Mehrjardi, A.; Ardakani, M.M.; Ardakani, R.B.; Mashhadizadeh, M.H.; Sargazi, S. Electrocatalytic determination of chlorpromazine drug using Alizarin Red S as a mediator on the glassy carbon electrode. Russ. J. Electrochem., 2011, 47(1), 34-41.
[64]
Ensafi, A.A.; Taei, M.; Khayamian, T.; Karimi-Maleh, H.; Hasanpour, F. Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J. Solid State Electrochem., 2010, 14(8), 1415-1423.
[65]
Jiangwen, L.; Faqiong, Z.; Ping, X.; Baizhao, Z. Voltammetric behavior of chlorpromazine at glassy carbon electrodes modified with room temperature ionic liquid 1-buty-3-methylimidazolium hexafluorophate. Chin. J. Anal. Chem., 2006, 34, S5-S9.
[66]
Ferancová, A.; Korgová, E.; Buzinkaiová, T.; Kutner, W.; Štěpánek, I.; Labuda, J. Electrochemical sensors using screen-printed carbon electrode assemblies modified with the β-cyclodextrin or carboxymethylated β-cyclodextrin polymer films for determination of tricyclic antidepressive drugs. Anal. Chim. Acta, 2001, 447(1), 47-54.
[67]
Izadyar, A.; Arachchige, D.R.; Cornwell, H.; Hershberger, J.C. Ion transfer stripping voltammetry for the detection of nanomolar levels of fluoxetine, citalopram, and sertraline in tap and river water samples. Sens. Actuators B Chem., 2016, 223, 226-233.
[68]
Daneshvar, L.; Rounaghi, G.H. Es’ haghi, Z.; Chamsaz, M.; Tarahomi, S. Fabrication a new modified electrochemical sensor based on Au-Pd bimetallic nanoparticle decorated graphene for citalopram determination. Mater. Sci. Eng. C, 2016, 69, 653-660.
[69]
Keypour, H.; Saremi, S.G.; Veisi, H.; Noroozi, M. Electrochemical determination of citalopram on new Schiff base functionalized magnetic Fe 3 O 4 nanoparticle/MWCNTs modified glassy carbon electrode. J. Electroanal. Chem., 2016, 780, 160-168.
[70]
Gholivand, M.B.; Akbari, A. A novel voltammetric sensor for citalopram based on multiwall carbon nanotube (poly (p-aminobenzene sulfonic acid)/β-cyclodextrin). Mater. Sci. Eng. C, 2016, 62, 480-488.
[71]
Ghaedi, H.; Afkhami, A.; Madrakian, T.; Soltani-Felehgari, F. Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. Mater. Sci. Eng. C, 2016, 59, 847-854.
[72]
Nouws, H.P.; Delerue‐Matos, C.; Barros, A.A. Electrochemical determination of citalopram by adsorptive stripping voltammetry-determination in pharmaceutical products. Anal. Lett., 2006, 39(9), 1907-1915.
[73]
Lejeune, R. Adsorptive stripping voltammetry of clotiapine at a hanging mercury drop electrode. Anal. Chim. Acta, 1992, 256(1), 59-63.
[74]
Tammari, E.; Nezhadali, A.; Lotfi, S.; Veisi, H. Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe 3 O 4/β-alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples. Sens. Act. B. Chem., 2017, 241, 879-886.
[75]
Shahrokhian, S.; Kamalzadeh, Z.; Hamzehloei, A. Electrochemical determination of Clozapine on MWCNTs/New Coccine doped PPY modified GCE: An experimental design approach. Bioelectrochemistry, 2013, 90, 36-43.
[76]
Mashhadizadeh, M.H.; Afshar, E. Electrochemical investigation of clozapine at TiO 2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochim. Acta, 2013, 87, 816-823.
[77]
Hammam, E.; Tawfik, A.; Ghoneim, M.M. Adsorptive stripping voltammetric quantification of the antipsychotic drug clozapine in bulk form, pharmaceutical formulation and human serum at a mercury electrode. J. Pharm. Biomed. Anal., 2004, 36(1), 149-156.
[78]
Huang, F.; Qu, S.; Zhang, S.; Liu, B.; Kong, J. Sensitive detection of clozapine using a gold electrode modified with 16-mercaptohexadecanoic acid self-assembled monolayer. Talanta, 2007, 72(2), 457-462.
[79]
Kim, E.; Chocron, S.E.; Ben‐Yoav, H.; Winkler, T.E.; Liu, Y.; Glassman, M.; Payne, G.F. Programmable “Semismart” Sensor: Relevance to Monitoring Antipsychotics. Adv. Funct. Mater., 2015, 25(14), 2156-2165.
[80]
Ben-Yoav, H.; Winkler, T.E.; Kim, E.; Chocron, S.E.; Kelly, D.L.; Payne, G.F.; Ghodssi, R. Redox cycling-based amplifying electrochemical sensor for in situ clozapine antipsychotic treatment monitoring. Electrochim. Acta, 2014, 130, 497-503.
[81]
Arvand, M.; Shiraz, M.G. Voltammetric determination of clozapine in pharmaceutical formulations and biological fluids using an in situ surfactant‐modified carbon ionic liquid electrode. Electroanalysis, 2012, 24(3), 683-690.
[82]
Ben-Yoav, H.; Chocron, S.E.; Winkler, T.E.; Kim, E.; Kelly, D.L.; Payne, G.F.; Ghodssi, R. An electrochemical micro-system for clozapine antipsychotic treatment monitoring. Electrochim. Acta, 2015, 163, 260-270.
[83]
Farhadi, K.; Karimpour, A. Electrochemical behavior and determination of clozapine on a glassy carbon electrode modified by electrochemical oxidation. Anal. Sci., 2007, 23(4), 479-483.
[84]
Farhadi, K.; Yamchi, R.H.; Sabzi, R. Electrochemical study of interaction between clozapine and DNA and its analytical application. Anal. Lett., 2007, 40(9), 1750-1762.
[85]
Fat, M.R.; Almasifar, D. Electrochemical sensor for square wave voltammetric determination of clozapine by glassy carbon electrode modified by wo 3 nanoparticles. IEEE Sens. J., 2017, 17(18), 6069-6076.
[86]
Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M. An electrochemical sensor for clozapine at ruthenium doped TiO 2 nanoparticles modified electrode. Sens. Act. B. Chem., 2017, 247, 858-867.
[87]
Cincotto, F.H.; Golinelli, D.L.; Machado, S.A.; Moraes, F.C. Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sens. Act. B. Chem., 2017, 239, 488-493.
[88]
Knihnicki, P.; Wieczorek, M.; Moos, A.; Kościelniak, P.; Wietecha-Posłuszny, R.; Woźniakiewicz, M. Electrochemical sensor for determination of desipramine in biological material. Sens. Act. B. Chem., 2013, 189, 37-42.
[89]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst, 2013, 138(5), 1395-1404.
[90]
Huang, L.; Bu, L.; Zhao, F.; Zeng, B. Voltammetric behavior of ethopropazine and the influence of sodium dodecylsulfate on its accumulation on gold electrodes. J. Solid State Electrochem., 2004, 8(12), 976-981.
[91]
Şentürk, Z.; Özkan, S.A.; Uslu, B.; Biryol, I. Anodic voltammetry of fluphenazine at different solid electrodes. J. Pharm. Biomed. Anal., 1996, 15(3), 365-370.
[92]
Huang, F.; Qu, S.; Zhang, S.; Liu, B.; Kong, J. determination of fluphenazine at a dodecanethiol self-assembled monolayer-modified gold electrode, and its electrocatalysis to phenylephrine. Mikrochim. Acta, 2007, 159(1-2), 157-163.
[93]
Zeng, B.; Huang, F. Electrochemical behavior and determination of fluphenazine at multi-walled carbon nanotubes/(3-mercaptopropyl) trimethoxysilane bilayer modified gold electrodes. Talanta, 2004, 64(2), 380-386.
[94]
Alizadeh, T.; Azizi, S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens. Bioelectron., 2016, 81, 198-206.
[95]
Da Silva, A.R.; Lima, J.C.; Teles, M.O.; Brett, A.O. Electrochemical studies and square wave adsorptive stripping voltammetry of the antidepressant fluoxetine. Talanta, 1999, 49(3), 611-617.
[96]
Roque, D.S.A.; Lima, J.C.; Oliva, T.M.; Oliveira, B.A. Electrochemical studies and square wave adsorptive stripping voltammetry of the antidepressant fluoxetine. Talanta, 1999, 49(3), 611-617.
[97]
Nouws, H.P.; Delerue‐Matos, C.; Barros, A.A.; Rodrigues, J.A.; Santos‐Silva, A.; Borges, F. Square‐wave adsorptive‐stripping voltammetric detection in the quality control of fluoxetine. Anal. Lett., 2007, 40(6), 1131-1146.
[98]
Dogan, B.; Özkan, S.A.; Uslu, B. Electrochemical characterization of flupenthixol and rapid determination of the drug in human serum and pharmaceuticals by voltammetry. Anal. Lett., 2005, 38(4), 641-656.
[99]
Madrakian, T.; Soleimani, M.; Afkhami, A. Electrochemical determination of fluvoxamine on mercury nanoparticle multi-walled carbon nanotube modified glassy carbon electrode. Sens. Act. B. Chem., 2015, 210, 259-266.
[100]
El-Desoky, H.S.; Ghoneim, M.M. Assay of the anti-psychotic drug haloperidol in bulk form, pharmaceutical formulation and biological fluids using square-wave adsorptive stripping voltammetry at a mercury electrode. J. Pharm. Biomed. Anal., 2005, 38(3), 543-550.
[101]
Ribeiro, F.W.P.; Soaresb, J.E.S.; Beckera, H.; Souzaa, D.D.; Lima-Netoa, P.D.; Correiaa, A.N. Electrochemical Mechanism and Kinetics Studies of Haloperidol and its Abaghessay in Commercial Formulations. Electrochim. Acta, 2011, 56(5), 2036-2044.
[102]
Ribeiro, F.W.; Mendonça, G.L.; Soares, J.E.; Freire, V.N.; De Souza, D.; Casciano, P.N.; Correia, A.N. Exploiting the reduction of haloperidol: electrochemical and computational studies using silver amalgam and HMDE electrodes. Electrochim. Acta, 2014, 137, 564-574.
[103]
Bagheri, H.; Afkhami, A.; Panahi, Y.; Khoshsafar, H.; Shirzadmehr, A. Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples. Mater. Sci. Eng. C, 2014, 37, 264-270.
[104]
Vire, J.C.; Fischer, M.; Patriarche, G.J.; Christian, G.D. Electrochemical behaviour of some neuroleptics: Haloperidol and its derivatives. Talanta, 1981, 28(5), 313-317.
[105]
Tuzhi, P.; Zhongping, Y.; Rongshan, L. Voltammetric measurement of haloperidol following adsorptive accumulation at glassy-carbon electrodes. Talanta, 1991, 38(7), 741-745.
[106]
Huang, F.; Peng, Y.; Jin, G.; Zhang, S.; Kong, J. Sensitive detection of haloperidol and hydroxyzine at multi-walled carbon nanotubes-modified glassy carbon electrodes. Sensors, 2008, 8(3), 1879-1889.
[107]
Ferancova, A.; Korgova, E.; Miko, R.; Labuda, J. Determination of tricyclic antidepresants using a carbon paste electrode modified with B-Cyclodextrin. J. Electroanal. Chem., 2000, 492, 74-77.
[108]
dos Santos Neto, A.G.; de Sousa, C.S.; da Silva Freires, A.; Silva, S.M.; Zanin, H.; Damos, F.S.; Luz, R.D.C.S. Electrochemical sensor for detection of imipramine antidepressant at low potential based on oxidized carbon nanotubes, ferrocenecarboxylic acid, and cyclodextrin: application in psychotropic drugs and urine samples. J. Solid State Electrochem., 2017, 1-10.
[109]
Xu, X.; Zhou, G.; Li, H.; Liu, Q.; Zhang, S.; Kong, J. A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles. Talanta, 2009, 78, 26-32.
[110]
Jankowska-Śliwińska, J.; Dawgul, M.; Pijanowska, D.G. DNA-based electrochemical biosensor for imipramine detection. Procedia Eng., 2015, 120, 574-577.
[111]
Norouzi, P.; Ganjali, M.R.; Akbari-Adergani, B. Sub-second FFT continuous tripping cyclic voltammetric technique as a novel method for pico-level monitoring of imipramine at Au microelectrode in flowing solutions. Acta Chim. Slov., 2006, 53, 499-505.
[112]
Eslami, E.; Farjami, F.; Aberoomand, A.P.; Saber, T.M. Adsorptive stripping voltammetric determination of imipramine and amitriptiline at a nanoclay composite carbon ionic liquid electrode. Electroanal., 2014, 26, 424-431.
[113]
de Toledo, R.A.; Santos, M.C.; Shim, H.; Mazo, L.H. Electroanalytical determination of imipramine in reconstituted serum with a graphite-polyurethane composite electrode. Int. J. Electrochem. Sci., 2015, 10, 6975-6985.
[114]
Oliveira, S.N.; Ribeiro, F.W.; Sousa, C.P.; Soares, J.E.S.; Suffredini, H.B.; Becker, H.; Correia, A.N. Imipramine sensing in pharmaceutical formulations using boron-doped diamond electrode. J. Electroanal. Chem., 2017, 788, 118-124.
[115]
Shishehbore, M.R.; Vafai-Shahi, S.; Shefaie, F.; Meshayekhee, H.A. Differential pulse voltammetry technique for the determination of imipramine, dopamine and norepinephrine using a hydroquinone derivative multi-wall carbon nano-tube carbon paste electrode. Orient. J. Chem., 2017, 33(2), 1017-1020.
[116]
Cinkova, K.; Matokarova, M.; Salusova, I.; Plankova, A.; Brtkova, B.; Borovska, K.; Svorc, L. Voltammetric determination of antidepressant imipramine in pharmaceutical preparations using boron-doped diamond electrode. Chem. Listy, 2017, 111(6), 392-397.
[117]
Mohammadi-Behzad, L.; Gholivand, M.B.; Shamsipur, M.; Gholivand, K.; Barati, A.; Gholami, A. Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine. Mater. Sci. Eng. C, 2016, 60, 67-77.
[118]
Arvand, M.; Palizkar, B. Development of a modified electrode with amine-functionalized TiO 2/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine. Mater. Sci. Eng. C, 2013, 33(8), 4876-4883.
[119]
Arvand, M.; Orangpour, S.; Ghodsi, N. Differential pulse stripping voltammetric determination of the antipsychotic medication olanzapine at a magnetic nano-composite with a core/shell structure. RSC Advances, 2015, 5(57), 46095-46103.
[120]
EL-SHAL. M.A. Electrochemical studies for the determination of quetiapine fumarate and olanzapine antipsychotic drugs. Adv. Pharm. Bull., 2013, 3(2), 339-344.
[121]
Ahmed, H.M.; Mohamed, M.A.; Salem, W.M. New voltammetric analysis of olanzapine in tablets and human urine samples using a modified carbon paste sensor electrode incorporating gold nanoparticles and glutamine in a micellar medium. Anal. Methods, 2015, 7, 581.
[122]
Merli, D.; Dondi, D.; Pesavento, M.; Profumo, A. Electrochemistry of olanzapine and risperidone at carbon nanotubes modified gold electrode through classical and DFT approaches. J. Electroanal. Chem., 2012, 683, 103-111.
[123]
Shahrokhian, S.; Azimzadeh, M.; Hosseini, P. Modification of a glassy carbon electrode with a bilayer of multiwalled carbon nanotube/benzene disulfonate-doped polypyrrole: application to sensitive voltammetric determination of olanzapine. RSC Advances, 2014, 4(76), 40553-40560.
[124]
Heli, H.; Sattarahmady, N.; Zarea, S.N. Electrooxidation and determination of perphenazine on a graphene oxide nanosheet modified electrode. RSC Advances, 2015, 5, 21005-21011.
[125]
Ozkan, S.A.; Ozkan, Y.; Senturk, Z. Electrooxidation of pimozide and its differential pulse voltammetric and HPLC-EC determination. Anal. Chim. Acta, 2002, 453(2), 221-229.
[126]
Arabali, V.; Ebrahimi, M.; Karimi-Maleh, H. Highly sensitive determination of promazine in pharmaceutical and biological samples using a ZnO nanoparticle-modified ionic liquid carbon paste electrode. Chin. Chem. Lett., 2016, 27(5), 779-782.
[127]
Rezaei, B.; Ensafi, A.A.; Jamshidi-mofrad, E. A sensitive electrochemical sensor for hydroxylamine determination: Using multiwall carbon nanotube paste electrode (MWCNTPE) and promazine hydrochloride as homogenous mediator. Sens. Act. B. Chem., 2015, 211, 138-145.
[128]
Alizadeh, T.; Akhoundian, M. Promethazine determination in plasma samples by using carbon paste electrode modified with molecularly imprinted polymer (MIP): Coupling of extraction, preconcentration and electrochemical determination. Electrochim. Acta, 2010, 55(20), 5867-5873.
[129]
Chen, Y.; Liu, H.; Liu, Y.; Yang, Z. Sensitive electrochemical determination of promethazine hydrochloride based on the poly (p-aminobenzene sulfonic acid)/flowerlike ZnO crystals composite film. Anal. Methods, 2014, 6(4), 1203-1209.
[130]
Honarmand, E.; Motaghedifard, M.H.; Hadi, M.; Mostaanzadeh, H. Electro-oxidation study of promethazine hydrochloride at the surface of modified gold electrode using molecular self assembly of a novel bis-thio Schiff base from ethanol media. J. Mol. Liq., 2016, 216, 429-439.
[131]
Nigović, B.; Spajić, J. A novel electrochemical sensor for assaying of antipsychotic drug quetiapine. Talanta, 2011, 86, 393-399.
[132]
Nigović, B.; Mornar, A.; Sertić, M. Graphene nanocomposite modified glassy carbon electrode for voltammetric determination of the antipsychotic quetiapine. Mikrochim. Acta, 2016, 183(4), 1459-1467.
[133]
Ozkan, S.A.; Dogan, B.; Uslu, B. Voltammetric analysis of the novel atypical antipsychotic drug quetiapine in human serum and urine. Mikrochim. Acta, 2006, 153(1), 27-35.
[134]
Taşdemir, I.H.; Çakirer, O.; Erk, N.; Kiliç, E. Square-wave cathodic adsorptive stripping voltammetry of risperidone. Collect. Czech. Chem. Commun., 2011, 76(3), 159-176.
[135]
Molaakbari, E.; Mostafavi, A.; Tohidiyan, Z.; Beitollahi, H. Synthesis and application of conductive polymeric ionic liquid/Ni nanocomposite to construct a nanostructure based electrochemical sensor for determination of risperidone and methylphenidate. J. Electroanal. Chem., 2017, 801, 198-205.
[136]
Meng, Z.; Zheng, J.; Zhu, X. Investigation on electrochemical
behavior of risperidone and its applicationActa. Chim. Sinica.-
Chinese Edition; , 2005, 63, . (9) 827
[137]
Arvand, M.; Pourhabib, A. Adsorptive Stripping Differential Pulse Voltammetric Determination of Risperidone with a Multi‐Walled Carbon Nanotube‐Ionic Liquid Paste Modified Glassy Carbon Electrode. J. Chin. Chem. Soc., 2013, 60(1), 63-72.
[138]
Cheng, H.; Liang, J.; Zhang, Q.; Tu, Y. The electrochemical behavior and oxidation mechanism of sertraline on a rutin modified electrode. J. Electroanal. Chem., 2012, 674, 7-11.
[139]
Dermiş, S.; Cay, H.Y. Electrochemical behaviour of sertraline hydrochloride at a glassy carbon electrode and its determination in pharmaceutical products using osteryoung square wave voltammetry. Die Pharmazie-An Int. J. Pharm. Sci., 2010, 65(3), 182-187.
[140]
Nouws, H.P.; Delerue-Matos, C.; Barros, A.A.; Rodrigues, J.A. Electroanalytical study of the antidepressant sertraline. J. Pharm. Biomed. Anal., 2005, 39(1), 290-293.
[141]
Vela, M.H.; Garcia, M.Q.; Montenegro, M.C.B.S.M. Electrochemical behaviour of sertraline at a hanging mercury drop electrode and its determination in pharmaceutical products. Fresenius J. Anal. Chem., 2001, 369(7-8), 563-566.
[142]
García, M.; Ortuño, J.A.; Albero, M.; Abuherba, M.S. Development of membrane selective electrode for determination of the antipsychotic sulpiride in pharmaceuticals and urine. Sensors, 2009, 9(6), 4309-4322.
[143]
Shahrokhian, S.; Ghalkhani, M.; Adeli, M.; Amini, K.M. Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine. Biosens. Bioelectron., 2009, 24(11), 3235-3241.
[144]
Shahrokhian, S.; Nassaba, N.H. Nanodiamond decorated with silver nanoparticles as a sensitive film modifier in a jeweled electrochemical sensor: application to voltammetric determination of thioridazine. Electroanal., 2013, 25(2), 417-425.
[145]
Azar, P.A.; Farjami, F.; Tehrani, M.S.; Eslami, E.J. A carbon nanocomposite ionic liquid electrode based on montmorillonite nanoclay for sensitive voltammetric determination of thioridazine. Int. J. Electrochem. Sci., 2014, 9, 2535-2547.
[146]
Feng, X.; Wang, C.; Cui, R.; Yang, X.; Hou, W.J. The synthesis of nitrogen-doped carbon nanotubes/gold composites and their application to the detection of thioridazine. J. Solid State Electrochem., 2012, 16, 2691-2698.
[147]
Mashhadizadeh, M.H.; Afshar, E. Electrochemical studies and selective detection of thioridazine using a carbon paste electrode modified with ZnS nanoparticles and simultaneous determination of thioridazine and olanzapine. Electroanal., 2012, 24(11), 2193-2202.
[148]
Biryol, I.; Dermiş, S. Voltammetric determination of thioridazine hydrochloride. Turk. J. Chem., 1998, 22, 325-333.
[149]
Amiri, M.; Sohrabnezhad, S.; Rahimi, A. Nickel (II) incorporated AlPO-5 modified carbon paste electrode for determination of thioridazine in human serum. Mater. Sci. Eng. C, 2014, 37, 342-347.
[150]
Tehrani, Z.M.; Farahani, Z.; Mohajer, A.; Mofidi, J. Determination of selenium in thioridazine hydrochloride by differential pulse anodic stripping voltammetry. Asian J. Chem., 2010, 22(6), 4611.
[151]
Jin, G.; Huang, F.; Li, W.; Yu, S.; Zhang, S.; Kong, J. Sensitive detection of trifluoperazine using a poly-ABSA/SWNTs film-modified glassy carbon electrode. Talanta, 2008, 74(4), 815-820.
[152]
Dogan-Topal, B. Electrooxidative behavior and determination of trifluoperazine at multiwalled carbon nanotube-modified glassy carbon electrode solid state. J. Solid State Electrochem., 2013, 17, 1059-1066.
[153]
Fei, H.; Quan-Ping, Y.; Bai-Zhao, Z.T. Electrochemical behavior and determination of trifluoperazine at decanethiol self. assembled monolayer modified gold electrodes. Wuhan Univ. J. Nat. Sci., 2005, 10(2), 435-440.
[154]
Atta, N.F.; Ahmed, Y.M. BinSabt, M. H.; Galal, A. Hematite nanoparticles/ionic liquid crystal/graphene-based nanocomposite electrochemical sensor for sensitive determination of antipsychotic drug. J. Electrochem. Soc., 2016, 163(14), B659-B666.
[155]
Stanković, D.; Dimitrijević, T.; Kuzmanović, D.; Krstić, M.P.; Petković, B.B. Voltammetric determination of an antipsychotic agent trifluoperazine at a boron-doped diamond electrode in human urine. RSC Advances, 2015, 5(129), 107058-107063.
[156]
Kul, D.; Gumustas, M.; Uslu, B.; Ozkan, S.A. Electroanalytical characteristics of antipsychotic drug ziprasidone and its determination in pharmaceuticals and serum samples on solid electrodes. Talanta, 2010, 82(1), 286-295.
[157]
Şentürk, Z.; Özkan, S.A.; Özkan, Y.; Aboul-Enein, H.Y. Voltammetric investigation of oxidation of zuclopenthixol and application to its determination in dosage forms and in drug dissolution studies. J. Pharm. Biomed. Anal., 2000, 22(2), 315-323.