[1]
Soriano-Ursúa, M.A.; Das, B.C.; Trujillo-Ferrara, J.G. Boron containing compounds: Chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin. Ther. Pat., 2014, 24, 485-500.
[2]
Ban, H.S.; Nakamura, H. Boron-based drug design. Chem. Rec., 2015, 15, 616-635.
[3]
Leśnikowski, Z.J. Recent developments with boron as a platform for novel drug design. Expert Opin. Drug Discov., 2016, 11, 569-578.
[4]
Del Rosso, J.Q.; Plattner, J.J. From the test tube to the treatment room: Fundamentals of boron-containing compounds and their relevance to dermatology. J. Clin. Aesthet. Dermatol., 2014, 7, 13-21.
[5]
Pizzorno, L. Nothing boring about boron. Integr. Med. (Encinitas), 2015, 14, 35-48.
[6]
Farfán-García, E.D.; Castillo-Mendieta, N.T.; Ciprés-Flores, F.J.; Padilla-Martínez, I.I.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicol. Lett., 2016, 258, 115-125.
[7]
Katsamakas, S.; Papadopoulos, A.G.; Hadjipavlou-Litina, D. Boronic acid group: A cumbersome false negative case in the process of drug design. Molecules, 2016, 21, E1185.
[8]
Nocentini, A.; Supuran, C.T.; Winum, J.Y. Benzoxaborole compounds for therapeutic uses: A patent review (2010- 2018). Expert Opin. Ther. Pat., 2018, 28, 493-504.
[9]
Fu, H.; Hu, J.; Zhang, M.; Wang, Y.; Zhang, H.; Hu, P. One-step preparation of phenyl boron-modified magnetic mesoporous silica for selective enrichment of cis-diol-containing substances. Molecules, 2018, 23(3), E603.
[10]
Marfin, Y.S.; Solomonov, A.V.; Timin, A.S.; Rumyantsev, E.V. Recent advances of individual BODIPY and BODIPY-based functional materials in medical diagnostics and treatment. Curr. Med. Chem., 2017, 24, 2745-2772.
[11]
Huang, H.; Yu, C.; Li, X.; Zhang, Y.; Zhang, Y.; Chen, X.; Mariano, P.S.; Xie, H.; Wang, W. Synthesis of aldehydes by organocatalytic formylation reactions of boronic acids with glyoxylic acid. Angew. Chem. Int. Ed. Engl., 2017, 56, 8201-8205.
[12]
Hunter, P. Not boring at all. Boron is the new carbon in the quest for novel drug candidates. EMBO Rep., 2009, 10, 125-128.
[13]
Soriano-Ursúa, M.A.; McNaught-Flores, D.A.; Nieto-Alamilla, G.; Segura-Cabrera, A. A.; Correa-Basurto, J.; Arias-Montaño, J.A.; Trujillo-Ferrara J.G. Cell-based and in-silico studies on the high intrinsic activity of two boron-containing salbutamol derivatives at the human B2-adrenoceptor. Bioorg. Med. Chem., 2012, 20, 933-941.
[14]
Wingelhofer, B.; Kreis, K.; Mairinger, S.; Muchitsch, V.; Stanek, J.; Wanek, T.; Langer, O.; Kuntner, C. Preloading with L-BPA, L-tyrosine and L-DOPA enhances the uptake of [18F]FBPA in human and mouse tumour cell lines. Appl. Radiat. Isot., 2016, 118, 67-72.
[15]
Soriano-Ursúa, M.A.; Arias-Montaño, J.A.; Correa-Basurto, J.; Hernández-Martínez, C.F.; López-Cabrera, Y.; Castillo-Hernández, M.C.; Padilla-Martínez, I.I.; Trujillo-Ferrara, J.G. Insights on the role of boron containing moieties in the design of new potent and efficient agonists targeting the β2 adrenoceptor. Bioorg. Med. Chem. Lett., 2015, 25, 820-825.
[16]
Baker, S.J.; Ding, C.Z.; Akama, T.; Zhang, Y.K.; Hernández, V.; Xia, Y. Therapeutic potential of boron-containing compounds. Future Med. Chem., 2009, 1, 1275-1288.
[17]
Ciani, L.; Ristori, S. Boron as a platform for new drug design. Expert Opin. Drug Discov., 2012, 7, 1017-1027.
[18]
Das, B.C.; Thapa, P.; Karki, R.; Schinke, C.; Das, S.; Kambhampati, S.; Banerjee, S.K.; Van Veldhuizen, P.; Verma, A.; Weiss, L.M.; Evans, T. Boron chemicals in diagnosis and therapeutics. Future Med. Chem., 2013, 5, 653-676.
[19]
Trippier, P.C.; McGuigan, C. Boronic acids in medicinal chemistry: Anticancer, antibacterial and antiviral applications. MedChemComm, 2010, 1, 183-198.
[20]
Diaz, D.B.; Yudin, A.K. The versatility of boron in biological target engagement. Nat. Chem., 2017, 9, 731-742.
[21]
Roy, C.D.; Brown, H.C. Stability of boronic esters - Structural effects on the relative rates of transesterification of 2-(phenyl)-1,3,2-dioxaborolane. J. Organomet. Chem., 2007, 692, 784-790.
[22]
Shonberg, J.; Kling, R.C.; Gmeiner, P.; Löber, S. GPCR crystal structures: Medicinal chemistry in the pocket. Bioorg. Med. Chem., 2015, 23, 3880-3906.
[23]
Tafi, A.; Agamennone, M.; Tortorella, C.; Alcaro, S.; Gallina, C.; Botta, M. AMBER force field implementation of the boronate function to simulate the inhibition of b-lactamases by alkyl and aryl boronic acids. Eur. J. Med. Chem., 2005, 40, 1134-1142.
[24]
Calvaresi, M.; Zerbetto, F.J. In silico carborane docking to proteins and potential drug targets. Chem. Inf. Model, 2011, 51, 1882-1896.
[25]
Aziz-Ketuli, K.; Hadi, A.H. Boronate derivatives of Functionally diverse catechols: Stability studies. Molecules, 2010, 15, 2347-2356.
[26]
Andrade-Jorge, E.; Garcia-Avila, A.K.; Ocampo-Nestor, A.L.; Trujillo-Ferrara, J.G.; Soriano-Ursua, M.A. Advances of bioinformatics applied to development and evaluation of boron-containing compounds. Curr. Org. Chem., 2018, 22, 298-306.
[27]
Ocampo-Néstor, A.L.; Trujillo-Ferrara, J.G.; Reyes-López, C.; Geninatti-Crich, S.; Soriano-Ursúa, M.A. Boron’s journey: Advances in the study and application of pharmacokinetics. Expert Opin. Ther. Pat., 2017, 27, 203-215.
[28]
Soriano-Ursúa, M.A.; Farfán-García, E.D.; López-Cabrera, Y.; Querejeta, E.; Trujillo-Ferrara, J.G. Boron-containing acids: Preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy. Neuro. Toxicol., 2014, 40, 8-15.
[29]
Wehrwein, E.A.; Orer, H.S.; Barman, S.M. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr. Physiol., 2016, 6, 1239-1278.
[30]
Vijverman, A.C.; Fox, S.H. New treatments for the motor symptoms of Parkinson’s disease. Expert Rev. Clin. Pharmacol., 2014, 7, 761-777.
[31]
Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; Windus, T.L.; Dupuis, M.; Montgomery, J.A., Jr General atomic and molecular electronic structure system. J. Comput. Chem., 1993, 14, 1347-1363.
[32]
Becke, A.D. Density functional thermochemistry III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5653.
[33]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785-789.
[34]
Wales, D.J.; Berry, R.S. Limitations of the Murrell-Laidler theorem. Faraday Trans, 1992, 88, 543-544.
[35]
CarCabal. P.; Snoek, L.C.; Van Mourik, T. A computational and spectroscopic study of the gas phase conformers of adrenaline. Mol. Phys., 2005, 103, 1633-1639.
[36]
Ramaekers, R.; Pajak, J.; Rospenk, M.; Maes, G. Matrix-isolation FT-IR spectroscopic study and theoretical DFT(B3LYP)/6-31 ++G** calculations of the vibrational and conformational properties of tyrosine. Spectrochimica Acta Part A, 2005, 61, 1347-1356.
[37]
Xu, J.; Wang, X.; Shao, C.; Su, D.; Cheng, G.; Hu, Y. Highly efficient synthesis of phenols by copper-catalyzed oxidative hydroxylation of arylboronic acids at room temperature in water. Org. Lett., 2010, 12, 1964-1967.
[38]
Zhang, L.; Zhang, G.; Zhang, M.; Cheng, J. Cu(OTf)2-mediated Chan-Lam reaction of carboxylic acids to access phenolic esters. J. Org. Chem., 2010, 75, 7472-7474.
[39]
Qi, H.L.; Chen, D.S.; Ye, J.S.; Huang, J.M. Electrochemical technique and copper-promoted transformations: Selective hydroxylation and amination of arylboronic acids. J. Org. Chem., 2013, 78, 7482-7487.
[40]
Zhu, C.; Wang, R.; Falck, J.R. Mild and rapid hydroxylation of aryl/heteroaryl boronic acids and boronate esters with N-oxides. Org. Lett., 2012, 14, 3494-3497.
[41]
Yi, H.; Lei, A. Pd-Catalyzed hydroxylation of aryl boronic acids using in situ generated hydrogen peroxide. Chemistry, 2017, 23, 10023-10027.
[42]
Gennari, A.; Gujral, C.; Hohn, E.; Lallana, E.; Cellesi, F.; Tirelli, N. Revisiting boronate/diol complexation as a double stimulus-responsive bioconjugation. Bioconjug. Chem., 2017, 28, 1391-1402.
[43]
Montanari, E.; Gennari, A.; Pelliccia, M.; Gourmel, C.; Lallana, E.; Matricardi, P.; McBain, A.J.; Tirelli, N. Hyaluronan/tannic acid nanoparticles via catechol/boronate complexation as a smart antibacterial system. Macromol. Biosci., 2016, 16, 1815-1823.
[44]
van der Vlies, A.J.; Inubushi, R.; Uyama, H.; Hasegawa, U. Polymeric framboidal nanoparticles loaded with a carbon monoxide donor via phenylboronic acid-catechol complexation. Bioconjug. Chem., 2016, 27, 1500-1508.
[45]
Zhong, M.; Dai, Y.; Fan, L.; Lu, X.; Kan, X. A novel substitution -sensing for hydroquinone and catechol based on a poly(3-aminophenylboronic acid)/MWCNTs modified electrode. Analyst, 2015, 140, 6047-6053.
[46]
Zhu, C.; Li, G.; Ess, D.H.; Falck, J.R.; Kürti, L. Elusive metal-free primary amination of arylboronic acids: Synthetic studies and mechanism by density functional theory. J. Am. Chem. Soc., 2012, 134, 18253-18256.
[47]
Bjerglund, K.M.; Skrydstrup, T.; Molander, G.A. Carbonylative Suzuki couplings of aryl bromides with boronic acid derivatives underbase-free conditions. Org. Lett., 2014, 16, 1888-1891.
[48]
Deng, C.C.; Brooks, W.L.A.; Abboud, K.A.; Sumerlin, B.S. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH. ACS Macro Lett., 2015, 4, 220-224.
[49]
Brooks, W.L.A.; Sumerlin, B.S. Synthesis and applications of boronic acid-containing polymers: From materials to medicine. Chem. Rev., 2016, 116, 1375-1397.
[50]
Özdemir, N.; Cakin, A.; Somtür, B. Boronic acid functionalized polymeric microspheres for catecholamine isolation. Colloid Surf. A., 2014, 445, 40-47.
[51]
Ueno, H.; Iwata, T.; Koshiba, N.; Takahashi, D.; Toshima, K. Design, synthesis and evaluation of a boronic acid based artificial receptor for (L)-DOPA in aqueous media. Chem. Commun. , 2013, 49, 10403-10405.
[52]
Bull, S.D.; Davidson, M.G.; van den Elsen, J.M.; Fossey, J.S.; Jenkins, A.T.; Jiang, Y.B.; Kubo, Y.; Marken, F.; Sakurai, K.; Zhao, J.; James, T.D. Exploiting the reversible covalent bonding of boronic acids: Recognition, sensing, and assembly. Acc. Chem. Res., 2013, 46, 312-326.
[53]
Rizi, R.N.; Noei, M. A theoretical study on monoatomic BN nanochains and nanorings. J. Mol. Model., 2016, 22, 205.
[54]
Li, Y.; Hao, J.; Liu, H.; Lu, S.; Tse, J.S. High-energy density and superhard nitrogen-rich B-N compounds. Phys. Rev. Lett., 2015, 115, 105502.
[55]
Karanjit, S.; Ehara, M.; Sakurai, H. Mechanism of the aerobic homocoupling of phenylboronic acid on Au20-: A DFT study. Chem. Asian J., 2015, 10, 2397-2403.
[56]
Chen, X.; Bartolotti, L.; Ishaq, K.; Tropsha, A. Molecular simulation of alkyl boronic acids: Molecular mechanics and solvation free energy calculations. J. Comput. Chem., 1994, 15, 333-345.
[57]
Essafi, S.; Tomasi, S.; Aggarwal, V.K.; Harvey, J.N. Homologation of boronic esters with organolithium compounds: A computational assessment of mechanism. J. Org. Chem., 2014, 79, 12148-12158.
[58]
Higa, S.; Suzuki, T.; Hayashi, A.; Tsuge, I.; Yamamura, Y. Isolation of catecholamines in biological fluids by boric acid gel. Anal. Biochem., 1977, 77, 18-24.
[59]
Lee, Z.S.; Critchley, J.A. Simultaneous measurement of catecholamines and kallikrein in urine using boric acid preservative. Clin. Chim. Acta, 1998, 276, 89-102.
[60]
Axthelm, J. Askes SHC, Elstner M, G UR, Görls H, Bellstedt P, Schiller A. Fluorinated boronic acid-appended pyridinium salts and 19F NMR spectroscopy for diol sensing. J. Am. Chem. Soc., 2017, 139(33), 11413-11420.
[61]
Li, X.S.; Li, S.; Kellermann, G. Simultaneous extraction and determination of monoamine neurotransmitters in human urine for clinical routine testing based on a dual functional solid phase extraction assisted by phenylboronic acid coupled with liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2017, 409, 2859-2871.
[62]
Li, H.; Zhang, X.; Zhang, L.; Wang, X.; Kong, F.; Fan, D.; Li, L.; Wang, W. Preparation of a boronate affinity silica stationary phase with enhanced binding properties towards cis-diol compounds. J. Chromatogr. A, 2016, 1473, 90-98.
[63]
He, H.; Zhou, Z.; Dong, C.; Wang, X.; Yu, Q.W.; Lei, Y.; Luo, L.; Feng, Y. Facile synthesis of a boronate affinity sorbent from mesoporous nanomagnetic polyhedral oligomeric silsesquioxanes composite and its application for enrichment of catecholamines in human urine. Anal. Chim. Acta, 2016, 944, 1-13.
[64]
Tossell, J.A. Boric acid adsorption on humic acids: Ab initio calculation of structures, stabilities, 11B NMR and 11B, 10B isotopic fractionations of surface complexes. Geochim. Cosmochim. Acta, 2006, 70, 5089-5103.
[65]
Saylor, R.A.; Reid, E.A.; Lunte, S.M. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway. Electrophoresis, 2015, 36, 1912-1919.
[66]
Hollenbach, E.; Schulz, C.; Lehnert, H. Rapid and sensitive determination of catecholamines and the metabolite 3-methoxy-4-hydroxyphen-ethyleneglycol using HPLC following novel extraction procedures. Life Sci., 1998, 63, 737-750.
[67]
Ma, R.; Shi, L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: Synthesis and applications in drug delivery. Polym. Chem., 2014, 5, 1503-1518.
[68]
Furikado, Y.; Nagahata, T.; Okamoto, T.; Sugaya, T.; Iwatsuki, S.; Inamo, M.; Takagi, H.D.; Odani, A.; Ishihara, K. Universal reaction mechanism of boronic acids with diols in aqueous solution: Kinetics and the basic concept of a conditional formation constant. Chemistry, 2014, 20, 13194-13202.
[69]
Chen, G.; Qiu, J.; Fang, X.; Xu, J.; Cai, S.; Chen, Q.; Liu, Y.; Zhu, F.; Ouyang, G. Boronate affinity-molecularly imprinted biocompatible probe: An alternative for specific glucose monitoring. Chem. Asian J., 2016, 11, 2240-2245.
[70]
Cheng, T.; Li, H.; Ma, Y.; Liu, X.; Zhang, H. Synthesis of boronic-acid-functionalized magnetic attapulgite for selective enrichment of nucleosides. Anal. Bioanal. Chem., 2015, 407, 3525-3529.
[71]
Jiang, H.P.; Qi, C.B.; Chu, J.M.; Yuan, B.F.; Feng, Y.Q. Profiling of cis-diol-containing nucleosides and ribosylated metabolites by boronate-affinity organic-silica hybrid monolithic capillary liquid chromatography/mass spectrometry. Sci. Rep., 2015, 5, 7785.
[72]
Sobel, D.O.; Shakir, K.M. Determination of glycated plasma proteins in normal and diabetic subjects utilizing aminophenylboronic acid columns. Diabete Metab., 1987, 13, 575-581.
[73]
Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Boron chemistry in a new light. Chem. Sci. , 2015, 6, 5366-5382.
[74]
Bernat, V.; Admas, T.H.; Brox, R.; Heinemann, F.W.; Tschammer, N. Boronic acids as probes for investigation of allosteric modulation of the chemokine receptor CXCR3. ACS Chem. Biol., 2014, 9, 2664-2677.
[75]
Du, J.; He, M.; Wang, X.; Fan, H.; Wei, Y. Facile preparation of boronic acid-functionalized magnetic nanoparticles with a high capacity and their use in the enrichment of cis-diol-containing compounds from plasma. Biomed. Chromatogr., 2015, 29, 312-320.
[76]
Zhai, W.; Sun, X.; James, T.D.; Fossey, J.S. Boronic acid‐based carbohydrate sensing. Chem. Asian J., 2015, 10, 1836-1848.
[77]
Schiefner, A.; Nästle, L.; Landgraf, M.; Reichert, A.J.; Skerra, A. Structural basis for the specific cotranslational incorporation of p-boronophenylalanine into biosynthetic proteins. Biochemistry, 2018, 57, 2597-2600.