[1]
Cassataro, J.; Estein, S.M.; Pasquevich, K.A.; Velikovsky, C.A.; de la Barrera, S.; Bowden, R.; Fossati, C.A.; Giambartolomei, G.H. Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect. Immun., 2005, 73(12), 8079-8088.
[2]
Paquet, J.Y.; Diaz, M.A.; Genevrois, S.; Grayon, M.; Verger, J.M.; de Bolle, X.; Lakey, J.H.; Letesson, J.J.; Cloeckaert, A. Molecular, antigenic, and functional analyses of Omp2b porin size variants of Brucella spp. J. Bacteriol., 2001, 183(16), 4839-4847.
[3]
Seleem, M.N.; Boyle, S.M.; Sriranganathan, N. Brucellosis: a re-emerging zoonosis. Vet. Microbiol., 2010, 140(3-4), 392-398.
[4]
Young, E.J. Human brucellosis. Rev. Infect. Dis., 1983, 5(5), 821-842.
[5]
Godfroid, J.; Nielsen, K.; Saegerman, C. Diagnosis of brucellosis in livestock and wildlife. Croat. Med. J., 2010, 51(4), 296-305.
[6]
Kakoma, I.; Baek, B.K.; Boyle, S.M.; Srianganathan, N.; Olsen, S.; Young, E. Comments on efforts to eradicate brucellosis. J. Am. Vet. Med. Assoc., 2007, 230(1), 27.
[7]
Boschiroli, M.L.; Foulongne, V.; O’Callaghan, D. Brucellosis: a worldwide zoonosis. Curr. Opin. Microbiol., 2001, 4(1), 58-64.
[8]
Cheville, N.F.; Stevens, M.G.; Jensen, A.E.; Tatum, F.M.; Halling, S.M. Immune responses and protection against infection and abortion in cattle experimentally vaccinated with mutant strains of Brucella abortus. Am. J. Vet. Res., 1993, 54(10), 1591-1597.
[9]
Vishnu, U.S.; Sankarasubramanian, J.; Gunasekaran, P.; Rajendhran, J. Novel Vaccine Candidates against Brucella melitensis Identified through Reverse Vaccinology Approach. OMICS, 2015, 19(11), 722-729.
[10]
Cloeckaert, A.; Vizcaíno, N.; Paquet, J.Y.; Bowden, R.A.; Elzer, P.H. Major outer membrane proteins of Brucella spp.: past, present and future. Vet. Microbiol., 2002, 90(1-4), 229-247.
[11]
Azad, A.K.; Hasan, Md. M.; Hossain, Md. S.; Rahman, M.R.; Chowdhury, P.A. In silico analysis of outer membrane protein 31 of Brucella spp. To identify and characterize the potential T cell epitope. Int. J. Pharm. Med. & Bio. Sc., 2013, 2(3), 2013.
[12]
Tibor, A.; Decelle, B.; Letesson, J.J. Outer membrane proteins Omp10, Omp16, and Omp19 of Brucella spp. are lipoproteins. Infect. Immun., 1999, 67(9), 4960-4962.
[13]
Cloeckaert, A.; de Wergifosse, P.; Dubray, G.; Limet, J.N. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay. Infect. Immun., 1990, 58(12), 3980-3987.
[14]
Mahdavi, J.; Pirinccioglu, N.; Oldfield, N.J.; Carlsohn, E.; Stoof, J.; Aslam, A.; Self, T.; Cawthraw, S.A.; Petrovska, L.; Colborne, N.; Sihlbom, C.; Borén, T.; Wooldridge, K.G. Ala’Aldeen, D.A. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol., 2014, 4, 130202.
[15]
Pasquevich, K.A.; García Samartino, C.; Coria, L.M.; Estein, S.M.; Zwerdling, A.; Ibañez, A.E.; Barrionuevo, P.; Oliveira, F.S.; Carvalho, N.B.; Borkowski, J.; Oliveira, S.C.; Warzecha, H.; Giambartolomei, G.H.; Cassataro, J. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis. J. Immunol., 2010, 184(9), 5200-5212.
[16]
Golshani, M.; Zandi, P.; Bouzari, S. In silico Design of Truncated Omp31 Protein of Brucella melitensis:Its Cloning and High Level Expression in Escherichia coli. Vac. Res. Vaccine Research, 2014, 1(1), 436-445.
[17]
Doytchinova, I.A.; Flower, D.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8, 4.
[18]
Singh, H.; Raghava, G.P. ProPred: prediction of HLA-DR binding sites. Bioinformatics, 2001, 17(12), 1236-1237.
[19]
Singh, H.; Raghava, G.P. ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics, 2003, 19(8), 1009-1014.
[20]
Soria-Guerra, R.E.; Nieto-Gomez, R.; Govea-Alonso, D.O.; Rosales-Mendoza, S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J. Biomed. Inform., 2015, 53, 405-414.
[21]
Toes, R.E.; Nussbaum, A.K.; Degermann, S.; Schirle, M.; Emmerich, N.P.; Kraft, M.; Laplace, C.; Zwinderman, A.; Dick, T.P.; Müller, J.; Schönfisch, B.; Schmid, C.; Fehling, H.J.; Stevanovic, S.; Rammensee, H.G.; Schild, H. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med., 2001, 194(1), 1-12.
[22]
Geourjon, C.; Deléage, G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci., 1995, 11(6), 681-684.
[23]
Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol., 1985, 55(3), 836-839.
[24]
Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol., 2001, 305(3), 567-580.
[25]
Wang, W.; Wu, J.; Qiao, J.; Weng, Y.; Zhang, H.; Liao, Q.; Qiu, J.; Chen, C.; Allain, J.P.; Li, C. Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep. Vaccine, 2014, 32(7), 825-833.
[26]
Tabatabai, L.B.; Pugh, G.W., Jr Modulation of immune responses in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine, 1994, 12(10), 919-924.
[27]
Vizcaíno, N.; Zygmunt, M.S.; Verger, J.M.; Grayon, M.; Cloeckaert, A. Localization and characterization of a specific linear epitope of the Brucella DnaK protein. FEMS Microbiol. Lett., 1997, 154(1), 117-122.
[28]
Remmert, M.; Linke, D.; Lupas, A.N.; Söding, J. HHomp--prediction and classification of outer membrane
proteins. Nucleic Acids Res, 2009, 37(Web
Server issue), W446-451.
[29]
Gomez, G.; Pei, J.; Mwangi, W.; Adams, L.G.; Rice-Ficht, A.; Ficht, T.A. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine. Reverse vaccinology and Brucella melitensis candidates identified via a reverse vaccinology approach. PLoS One, 2013, 8(3), e59751.
[30]
Bot, A.; Obrocea, M.; Marincola, F. Cancer Vaccines:
From Research to Clinical Practice. CRC press Taylor
& Francis Group: New York, 2011.
[31]
Whitacre, D.C.; Lee, B.O.; Milich, D.R. Use of hepadnavirus core proteins as vaccine platforms. Expert Rev. Vaccines, 2009, 8(11), 1565-1573.
[32]
Purcell, A.W.; McCluskey, J.; Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov., 2007, 6(5), 404-414.
[33]
Testa, J.S.; Philip, R. Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications. Future Virol., 2012, 7(11), 1077-1088.
[34]
Roider, J.; Meissner, T.; Kraut, F.; Vollbrecht, T.; Stirner, R.; Bogner, J.R.; Draenert, R. Comparison of experimental fine-mapping to in silico prediction results of HIV-1 epitopes reveals ongoing need for mapping experiments. Immunology, 2014, 143(2), 193-201.