Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Achievements in the Synthesis of Elemental Silver Nanoparticles with Various Geometric Forms

Author(s): Oleg V. Mikhailov*

Volume 15, Issue 2, 2019

Page: [112 - 128] Pages: 17

DOI: 10.2174/1573413714666180705141337

Price: $65

Abstract

Background: The data on the specific synthesis of elemental silver nanoparticles (Ag-NP) having the forms of various geometric bodies (pseudo spherical, prismatic, cubic, trigonal-pyramidal, etc.), obtained by various methods, have been systematized and generalized.

Objective: It is noted that the forms and sizes of Ag-NP are greatly dependant on the conditions in which they are formed.

Method: Comparison of the data of the characteristics of silver nanoparticles obtained by chemical, physicochemical and biological methods has been made.

Results: It has been shown that form and size of produced Ag-NP depend strongly on the such factors as temperature, the concentration of silver(I) containing precursor, pH of the solution, the molar ratio between capping agent and silver(I) containing precursor, reducing agents etc., and, also, on the method used for Ag-NP synthesis (chemical, physicochemical or biological).

Conclusion: It has also been noted that biological methods of synthesis of Ag-NP are generally more preferable in comparison with the chemical and physicochemical methods. The review covers mainly publications published in the last 20 years.

Keywords: Ag-NP, geometric forms, synthesis, chemical method, physicochemical method, biological method.

Graphical Abstract

[1]
Henglein, A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev., 1989, 89, 1861-1873.
[2]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27, 76-83.
[3]
Mees, K.; James, T.H. The Theory of Photographic Process; Collier Macmillan Ltd., 1973.
[4]
James, T.H. The Theory of Photographic Process; Macmillan Publishig Co., 1977.
[5]
Sviridov, V.V.; Kondrat’ev, V.A. Photographic processes with silverless physical development. Uspekhi Nauchn. Fotogr., 1978, 19, 43-64.
[6]
Creighton, J.A.; Blatchford, G.G.; Albrecht, M.G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc., Faraday Trans. II, 1979, 75, 790-798.
[7]
Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem., 1982, 86, 3391-3395.
[8]
Lue, J.T. A review characterization and physical property studies of metallic nanoparticles. Phys. Chem. Solids, 2001, 62, 1599-1612.
[9]
Taniguchi, N. In: On the basic concept of nanotechnology, Proceedings of the International Conference on Precision Engineering (ICPE), Tokyo1974, pp. 18-23.
[10]
Bhatt, J.S.A. Heralding a new future – Nanotechnology. Curr. Sci., 2003, 85, 147-154.
[11]
Bohr, M.T. Nanotechnology goals and challenges for electronic applications. Nanotechnol. IEEE Trans, 2002, 1, 56-62.
[12]
James, E.M. Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy, 1999, 78, 125-139.
[13]
Sanjeeb, K.S.; Vinod, L. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8, 1112-1120.
[14]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine, 2010, 6, 257-262.
[15]
Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S.; Michailidis, N. Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater. Lett., 2012, 76, 18-20.
[16]
Shameli, K.; Bin Ahmad, M.; Jaffar Al-Mulla, E.A.; Ibrahim, N.A.; Shabanzadeh, P.; Rustaiyan, A.; Abdollahi, Y.; Bagheri, S.; Abdolmohammadi, S.; Usman, M.S.; Zidan, M. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 2012, 17, 8506-8517.
[17]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boom to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine , 2012, 8, 147-166.
[18]
Gurunathan, S.; Kalishwaralal, K.V.; Aidyanathan, R.; Deepak, V.; Pandian, S.; Muniyandi, J. Purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B, 2009, 74, 328-335.
[19]
Hussain, S.; Pal, A.K. Incorporation of nanocrystalline silver on carbon nanotubes by electrodeposition technique. Mater. Lett., 2008, 62, 1874-1877.
[20]
Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Islam Khan, M.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B, 2003, 28, 313-318.
[21]
Lee, S.Y.; Lim, J.S.; Harris, M.T. Synthesis and application of virus-based hybrid nanomaterials. Biotechnol. Bioeng., 2012, 109, 16-30.
[22]
Ghorbani, H.R.; Safekordi, A.A.; Attar, H.; Rezayat Sorkhabadi, S.M. Biological and non-biological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. Q., 2011, 25, 317-326.
[23]
Yeo, S.; Lee, H.; Jeong, S. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci., 2003, 38, 2143-2147.
[24]
Zhang, J.; Chen, P.; Sun, C.; Hu, X. Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Appl. Catal., 2004, A266, 49-54.
[25]
Zhang, W.; Qiao, X.; Chen, J.; Wang, H. Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J. Colloid Interface Sci., 2006, 302, 370-373.
[26]
Chimentao, R.; Kirm, I.; Medina, F.; Rodriguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chem. Commun., 2004, 4, 846-847.
[27]
He, B.; Tan, J.; Liew, K.; Liu, H. Synthesis of size controlled Ag nanoparticles. J. Mol. Catal. Chem., 2004, 221, 121-126.
[28]
Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications. World scientific publishing Co. Pte. Ltd; Imperial College Press: London, 2004.
[29]
Krutyakov, Y.A.; Kudrinskiy, A.A.; Olenin, A.Y.; Lisichkin, G.V. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev., 2008, 77, 233-257.
[30]
Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Saravanan, M.; Ubaid, M.F.; Ali, M.; Shinwari, Z.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine, 2016, 11, 3157-3177.
[31]
Ovais, M.; Raza, A.; Naz, S.; Islam, N.U.; Khalil, A.T.; Ali, S.; Khan, M.A.; Shinwari, Z.K. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl. Microbiol. Biotechnol., 2017, 101, 3551-3565.
[32]
Singh, P.; Kim, Y.J.; Yang, D.C. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif. Cells Nanomed. Biotechnol., 2016, 44, 1949-1957.
[33]
Nejad, M.S.; Khatami, M.; Bonjar, G.H.S. Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus. IET Nanobiotechnol., 2016, 10, 33-38.
[34]
Singh, P.; Kim, Y.J.; Wang, C.; Mathiyalagan, R.; Yang, D.C. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif. Cells Nanomed. Biotechnol., 2016, 44, 1150-1157.
[35]
Singh, P.; Singh, H.; Kim, Y.J.; Mathiyalagan, R.; Wang, C.; Yang, D.C. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis Dc4 and their biological applications. Enzyme Microb. Technol., 2016, 86, 75-83.
[36]
Sumera, A.; Anwar, A.; Ovais, M.; Khan, A.; Raza, A. Docetaxel loaded solid lipid nanoparticles: A novel drug delivery system. IET Nanobiotechnol., 2017, 11, 621-629.
[37]
Subbaiya, R.; Saravanan, M.; Priya, A.R.; Shankar, K.R.; Selvam, M.; Ovais, M.; Balajee, R.; Barabadi, H. Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol., 2017, 11, 965-972.
[38]
Arokiyaraj, S.; Vincent, S.; Saravanan, M.; Lee, Y.; Oh, Y.K.; Kim, K.H. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol., 2017, 45, 372-379.
[39]
Kasithevar, M.; Saravanan, M.; Prakash, P.; Kumar, H.; Ovais, M.; Barabadi, H.; Shinwari, Z.K. Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. J. Interdiscip. Nanomed., 2017, 2, 131-141.
[40]
Manna, A.; Imae, T.; Iida, M.; Hisamatsu, N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex. Langmuir, 2001, 17, 6000-6004.
[41]
Xu, R.; Wang, D.; Zhang, J.; Li, Y. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J., 2006, 1, 888-893.
[42]
Abid, J.P.; Wark, A.W.; Brevet, P.F.; Girault, H.H. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem. Commun., 2002, 7, 792-793.
[43]
Cai, X.; Zhai, A. Preparation of microsized silver crystals with different morphologies by a wet-chemical method. Rare Met., 2010, 29, 407.
[44]
Liang, H.; Wang, W.; Huang, Y.; Zhang, S.; Wei, H.; Xu, H. Controlled synthesis of uniform silver nanospheres. J. Phys. Chem. C, 2010, 114, 7427-7431.
[45]
Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A, 2010, 372, 172-176.
[46]
Aguilare, M.A.M.; Martin, E.S.M.; Arroyo, L.O.; Portillo, G.C.; Espindola, E.S.J. Synthesis and characterization of silver nanoparticles: Effect on phytopathogen Colletotrichum gloesporioides. Nanopart. Res, 2011, 13, 2525-2532.
[47]
Pyatenko, A.; Yamaguchi, M.; Suzuki, M. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J. Phys. Chem. C, 2007, 111, 7910-7917.
[48]
Moghimi-Rad, J.; Dallali Isfahani, T.; Hadi, I.; Ghalamdaran, S.; Sabbaghzadeh, J.; Sharif, M. Shape-controlled synthesis of silver particles by surfactant self-assembly under ultrasound radiation. Appl. Nanosci., 2011, 1, 27-35.
[49]
Al-Thabaiti, S.A.; Malik, M.A.; Al-Youbi, A.A.O.; Khan, Z.; Hussain, J.I. Effects of surfactant and polymer on the morphology of advanced nanomaterials in aqueous solution. Int. J. Electrochem. Sci., 2013, 8, 204-218.
[50]
Tsuji, M.; Matsumoto, K.; Jiang, P.; Matsuo, R.; Hikino, S.; Tang, X.L.; Nor Kamarudin, K.S. The role of adsorption species in the formation of Ag nanostructures by a microwave-polyol route. Bull. Chem. Soc. Jpn., 2008, 81, 393-400.
[51]
Sergeev, B.M.; Lopatina, L.I.; Prusov, A.N.; Sergeev, G.B. Borohydride reduction of AgNO3 in polyacrylate aqueous solutions: Two-stage synthesis of “Blue Silver”. Colloid J., 2005, 67, 213-216.
[52]
Tang, B.; An, J.; Zheng, X.; Xu, S.; Li, D.; Zhou, J.; Zhao, B.; Xu, W. Silver Nanodisks with tunable size by heat aging. J. Phys. Chem. C, 2008, 112, 18361-18367.
[53]
Zheng, X.; Zhao, X.; Guo, D.; Tang, B.; Xu, S.; Zhao, B.; Xu, W.; John, R.; Lombardi, J.R. Photochemical formation of silver nanodecahedra: Structural selection by the excitation wavelength. Langmuir, 2009, 25, 3802-3807.
[54]
D’Agostino, S.; Sala, F.D. Silver nanourchins in plasmonics: Theoretical investigation on the optical properties of the branches. J. Phys. Chem. C, 2011, 115, 11934-11940.
[55]
Saade, J.; de Araújo, C.B. Synthesis of silver nanoprisms: A photochemical approach using light emission diodes. Mater. Chem. Phys., 2014, 148, 1184-1193.
[56]
Li, Y.; Li, Z.; Gao, Y.; Gong, A.; Zhang, Y.; Hosmane, N.S.; Zheyu Shen, Z. Wu, A. “Red-to-blue” colorimetric detection of cysteine via anti-etching of silver nanoprisms. Nanoscale, 2014, 6, 10631-10637.
[57]
Mikhailov, O.V. Electron microscopy of elemental silver produced by its reprecipitation in glass-like biopolymer film. Glass Phys. Chem., 2017, 43, 471-474.
[58]
Mikhailov, O.V. Self-assembly of molecules of metal macrocyclic compounds in nanoreactors on the basis of biopolymer-immobilized matrix systems. Nanotechnol. Russ., 2010, 5, 18-34.
[59]
Mikhailov, O.V. Synthesis of 3d-element metalmacrocyclic chelates into polypeptide biopolymer medium and their molecular structures. Inorg. Chim. Acta, 2013, 394, 664-684.
[60]
Mikhailov, O.V. Sol–gel technology and template synthesis in thin gelatin films. J. Sol-Gel Sci. Technol., 2014, 72, 314-327.
[61]
Mikhailov, O.V. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates. Nano Rev., 2014, 5, 14767-14785.
[62]
Mikhailov, O.V.; Kazymova, M.A.; Chachkov, D.V. Self-assembly and quantum chemical design of macrotricyclic and macrotetracyclic 3d-element metal chelates formed in the gelatin-immobilized matrix. Russ. Chem. Bull. Int. Ed., 2015, 64, 1757-1771.
[63]
Mikhailov, O.V.; Kondakov, A.V.; Krikunenko, R.I. Image intensification in silver halide photographic materials for detection of high-energy radiation by reprecipitation of elemental silver. High Energy Chem., 2005, 39, 324-329.
[64]
Mikhailov, O.V.; Naumkuna, N.I.; Kondakov, A.V.; Lygina, T.Z. On a new phase of elemental silver, appearing on Its “Reprecipitation” in Ag–gelatin-immobilized matrix systems. Russ. J. Gen. Chem., 2008, 78, 1650-1654.
[65]
Mikhailov, O.V.; Naumkina, N.I. Novel modification of elemental silver formed into Ag4[Fe(CN)6]-gelatin-immobilized matrix implants. Cent. Eur. J. Chem., 2010, 8, 448-452.
[66]
Mikhailov, O.V.; Naumkina, N.I.; Lygina, T.Z. Novel phase of elemental silver nano-particles formed at combination of complexing and redox-processes into gelatin matrix. Polym. Res. J., 2013, 5, 167-181.
[67]
Mikhailov, O.V. Enzyme-assisted matrix isolation of novel dithiooxamide complexes of nickel(II). Indian J. Chem., 1991, 30A, 252-254.
[68]
Murphy, C.J.; Gole, A.M.; Hunyadi, S.E.; Orendorff, C.J. one-dimensional colloidal gold and silver nanostructures. Inorg. Chem., 2006, 45, 7544-7554.
[69]
Wiley, B.; Sun, Y.G.; Mayers, B.; Xia, Y.N. Shape-controlled synthesis of metal nano-structures: The case of silver. Chem. Eur. J., 2005, 11, 454-463.
[70]
Marks, L.D. Experimental studies of small particle structures. Rep. Prog. Phys., 1994, 57, 603-609.
[71]
Liu, S.; Yue, J.; Gedanken, A. Synthesis of long silver nanowires from AgBr nanocrystals. Adv. Mater., 2001, 13, 656-658.
[72]
Jana, N.R.; Gearheart, L.; Murphy, C.J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun., 2001, 7, 617-618.
[73]
Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601), 2176-2179.
[74]
Sun, Y.; Xia, Y.N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater., 2002, 14, 833-837.
[75]
Sun, Y.; Gates, B.; Mayers, B.; Xia, Y.N. Crystalline silver nanowires by soft solution processing. Nano Lett., 2002, 2, 165-168.
[76]
Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y.N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett., 2003, 3, 955-960.
[77]
Jiang, P.; Li, S.; Xie, S.; Gao, Y.; Song, L. Machinable long PVP-stabilized silver nanowires. Chem. Eur. J., 2004, 10, 4817-4821.
[78]
Wiley, B.; Im, S.H.; Li, Z.Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B, 2006, 110, 15666-17675.
[79]
Zhang, D.; Qi, L.; Yang, J.; Ma, J.; Cheng, H.; Huang, L. Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chem. Mater., 2004, 16, 872-876.
[80]
Cong, F. Wei1, H.; Tian, X.; Xu, H. A facile synthesis of branched silver nanowire structures and its applications in surfaceenhanced Raman scattering. Front. Phys., 2012, 7, 521-526.
[81]
Hsieh, C.T.; Tzou, D.Y.; Pan, C.; Chen, W.Y. Microwaveassisted deposition, scalable coating, and wetting behavior of silver nanowire layers. Surf. Coat. Tech., 2012, 207, 11-18.
[82]
Fu, H.; Yang, X.; Jiang, X.; Yu, A. Bimetallic Ag–Au nanowires: Synthesis, growth mechanism, and catalytic properties. Langmuir, 2013, 29, 7134-7142.
[83]
Chen, D.; Qiao, X.; Qiu, X.; Chen, J.; Jiang, R. Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method. Nanotechnology, 2010, 21(2), 025607.
[84]
Chang, Y.; Lu, Y.; Chou, K. Diameter control of silver nanowires by chloride ions and its application as transparent conductive coating. Chem. Lett., 2011, 40, 1352-1353.
[85]
Zhu, J.J.; Kan, C.X.; Wan, J.G.; Han, M.; Wang, G.H. Highyield synthesis of uniform ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J. Nanomater., 2011, 2011, Article ID 982547.
[86]
Murphy, C.J.; Jana, N.R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater., 2002, 14, 80-82.
[87]
Liu, Q.; Yin, G.; Han, M.; Liu, H.; Zhu, J.; Liang, Y.; Xu, Z. Large-scale synthesis of single crystal silver nanowires by a sodium diphenylamine sulfonate reduction process. J. Nanosci. Nanotechnol., 2006, 6, 231-234.
[88]
Korte, K.E.; Skrabalak, S.E.; Xia, Y. Rapid synthesis of silver nanowires through a CuCl or CuCl2 mediated polyol process. J. Mater. Chem., 2008, 18, 437-441.
[89]
Wiley, B.; Sun, Y.; Chen, J.; Cang, H.; Li, Z.Y.; Li, X.; Xia, Y. Silver and gold nanostructures with well-controlled shapes. MRS Bull., 2005, 30, 356-361.
[90]
Wiley, B.; Sun, Y.G.; Xia, Y.N. Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) species. Langmuir, 2005, 21, 8077-8080.
[91]
Chen, H.M.; Liu, R.S. Architecture of metallic nanostructures: Synthesis strategy and specific applications. J. Phys. Chem. C, 2011, 115, 3513-3527.
[92]
Sun, B.; Jiang, X.; Dai, S.; Du, Z. Single-crystal silver nanowires: preparation and surface-enhanced Raman scattering (SERS) property. Mater. Lett., 2009, 63, 2570-2573.
[93]
Nghia, N.; Truong, N.N.K.; Thong, N.M.; Hung, N.P. Synthesis of nanowire-shaped silver by polyol process of sodium chloride. Int. J. Mater. Chem, 2012, 2, 75-78.
[94]
Kou, J.; Varma, R.S. Speedy fabrication of diameter-controlled Ag nanowires using glycerol under microwave irradiation conditions. Chem. Commun., 2013, 49, 692-694.
[95]
Yan, G.; Wang, L.; Zhang, L. Recent research progress on preparation of silver nanowires by soft solution method, preparation of gold nanotubes and Pt nanotubes from resultant silver nanowires and their applications in conductive adhesive. Rev. Adv. Mater, 2010, 24, 10-25.
[96]
Hu, J.Q.; Chen, Q.; Xie, Z.X.; Han, G.B.; Wang, R.H.; Ren, B.; Zhang, Y.; Yang, Z.L.; Tian, Z.Q. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv. Funct. Mater., 2004, 14, 183-189.
[97]
Ino, S.; Ogava, D. Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals. J. Phys. Soc. Jpn., 1967, 22, 1365-1374.
[98]
Ino, S. Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum. J. Phys. Soc. Jpn., 1966, 21, 346-362.
[99]
Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev., 2005, 249, 1870-1901.
[100]
Kim, F.; Song, J.H.; Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc., 2002, 124, 14316-14317.
[101]
Martin, C.R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266(5193), 1961-1966.
[102]
Aslan, K.; Leonenko, Z.; Lakowicz, J.R.; Geddes, C.D. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. B, 2005, 109(8), 3157-3162.
[103]
Orendoff, C.J.; Gearheart, L.; Jana, N.R.; Murphy, C.J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys., 2006, 8, 165-170.
[104]
Gu, X.; Nie, C.; Lai, Y.; Lin, C. Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions. Mater. Chem. Phys., 2006, 96, 217-222.
[105]
Xu, J.; Cheng, G.; Zheng, R. Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method. Appl. Surf. Sci., 2010, 256, 5006-5010.
[106]
Hu, Z.S.; Hung, F.Y.; Chang, S.J.; Hsieh, W.K.; Chen, K.J. Align Ag nanorods via oxidation reduction growth using RFsputtering. J. Nanomater., 2012, 2012, Article ID 345086.
[107]
Métraux, G.S.; Mirkin, C.A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater., 2005, 17, 412-415.
[108]
Ledwith, D.M.; Whelan, A.M.; Kelly, J.M. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J. Mater. Chem., 2007, 17, 2459-2464.
[109]
Xue, C.; Mirkin, C.A. pH-switchable silver nanoprism growth pathways. Angew. Chem. Int. Ed., 2007, 46, 2036-2038.
[110]
Aherne, D.; Ledwith, D.M.; Gara, M.; Kelly, J.M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater., 2008, 18, 2005-2016.
[111]
Bastys, V.; Pastoriza-Santos, I.; Rodríguez‐González, B.; Vaisnoras, R.; Liz-Marzán, L.M. Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv. Funct. Mater., 2006, 16, 766-773.
[112]
Tsuji, M.; Gomi, S.; Maeda, Y.; Matsunaga, M.; Hikino, S.; Uto, K.; Tsuji, T.; Kawazumi, H. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir, 2012, 28, 8845-8861.
[113]
Darmanin, T.; Nativo, P.; Gilliland, D.; Ceccone, G.; Pascual, C.; Berardis, B.D.; Guittard, F.; Rossi, F. Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids Surf. A, 2012, 395, 145-151.
[114]
Wiley, B.J.; Chen, Y.; McLellan, J.M.; Xiong, Y.; Li, Z.Y.; Ginger, D.; Xia, Y. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett., 2007, 7, 1032-1036.
[115]
Jin, R.; Cao, Y.; Mirkin, C.A.; Kelly, K.L.; Schatz, G.C.; Zheng, J.G. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548), 1901-1903.
[116]
Yamamoto, T.; Yin, H.; Wada, Y.; Kitamura, T.; Sakata, T.; Mori, H.; Yanagida, S. Morphology-control in microwave-assisted synthesis of silver particles in aqueous solutions. Bull. Chem. Soc. Jpn., 2004, 77, 757-761.
[117]
Dong, X.; Ji, X.; Jing, J.; Li, M.; Li, J.; Yang, W. Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J. Phys. Chem. C, 2010, 114, 2070-2074.
[118]
Kelly, J.M.; Keegan, G.; Brennan-Fournet, M.E. Triangular silver nanoparticles: Their preparation functionalisation and properties. Acta Phys. Pol. A, 2012, 122, 337-348.
[119]
Millstone, J.E.; Wei, W.; Jones, M.R.; Yoo, H.; Mirkin, C.A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett., 2008, 8, 2526-2529.
[120]
Im, S.H.; Lee, Y.T.; Wiley, B.; Xia, Y. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed., 2005, 44, 2154-2157.
[121]
Tao, A.; Sinsermsuksakul, P.; Yang, P.D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed., 2006, 45, 4597-4601.
[122]
Wiley, B.; Herricks, T.; Sun, Y.G.; Xia, Y.N. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett., 2004, 4, 1733-1739.
[123]
Siekkinen, A.R.; McLellan, J.M.; Chen, J.; Xia, Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett., 2006, 432, 491-496.
[124]
Skrabalak, S.; Au, L.; Li, X.; Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc., 2007, 2, 2182-2190.
[125]
Rycenga, M.; McLellan, J.M.; Xia, Y. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater., 2008, 20, 2416-2420.
[126]
Huang, L.; Zhai, M.L.; Long, D.W.; Peng, J.; Xu, L.; Wu, G.Z.; Li, J.Q.; Wei, G.S. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J. Nanopart. Res., 2008, 10, 1193-1202.
[127]
Zhang, Q.; Li, W.; Wen, L.P.; Chen, J.; Xia, Y. Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chem. Eur. J., 2010, 16, 10234-10239.
[128]
Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z.Y.; Zhang, Q.; Zhu, Y.; Xia, Y. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc., 2010, 132, 8552-8553.
[129]
Zaheer, Z. Rafiuddin. Multi-branched flower-like silver nanoparticles: Preparation and characterization. Colloids Surf. A, 2011, 384, 427-431.
[130]
Saravanan, M.; Barik, S.K.; Mubarak, A.D.; Prakash, P.; Pugazhendhi, A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog., 2018, 116, 221-226.
[131]
Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog., 2018, 117, 68-72.
[132]
Kasithevar, M.; Prakash, P.; Saravanan, M.; Mahalakshmi, M. Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Microb. Pathog., 2017, 107, 327-334.
[133]
Ovais, M.; Nadhman, A.; Khalil, A.T.; Raza, A.; Khuda, F.; Zakiullah, S.; Islam, N.; Sarwar, H.S.; Shahnaz, G.; Ahmad, I.; Saravanan, M.; Shinwari, Z.K. Biosynthesized colloidal silver and gold nanoparticles as emerging leishmanicidal agents: An insight. Nanomedicine, 2017, 12, 2807-2819.
[134]
Arokiyaraj, S.; Kumar, V.D.; Elakya, V.; Kamala, T.; Park, S.K.; Ragam, M.; Saravanan, M.; Bououdina, M.; Arasu, M.V.; Kovendan, K.; Vincent, S. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L. – potential for malaria vector control. Environ. Sci. Pollut. Res., 2015, 22, 9759-9765.
[135]
Gopinath, V.; Priyadarshini, S.; Venkatkumar, G.; Saravanan, M.; Ali, D.M. Antibacterial silver nanoparticles. Pharm. Nanotechnol., 2015, 3, 26-34.
[136]
Saravanan, M.; Jacob, V.; Arockiaraj, J.; Prakash, P. Extracellular biosynthesis, characterization and antibacterial activity of silver nanoparticles synthesized by Bacillus subtilis (NCIM-2266). J. Bionanosci, 2014, 8, 21-27.
[137]
Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B Biointerfaces, 2013, 108, 255-259.
[138]
Saravanan, M.; Vemu, A.K.; Barik, S.K. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf. B Biointerfaces, 2011, 88, 325-331.
[139]
Saravanan, M.; Nanda, A. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf. B Biointerfaces, 2010, 77, 214-218.
[140]
Saravanan, M.; Nanda, A.; Kingsley, S.J. Lactobacillus delbrueckii mediated synthesis of silver nanoparticles and their evaluation of antibacterial efficacy against MDR clinical pathogens. International Conference on Nanoscience, Engineering and Technology (ICONSET 2011, November 28-30). Abstracts, 2011, 386-390.
[141]
Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wanh, H.; Wang, Y.; Shao, W.; He, N.; Hong, J.; Chen, C. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum canphora leaf. Nanotechnology, 2007, 18, 1-11.
[142]
Chandra, P.S.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog., 2006, 22, 577-583.
[143]
Anal, K.; Jha, K.A.; Prasad, K.; Kumar, V.; Prasad, K. Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol. Prog., 2009, 25, 1476-1479.
[144]
Narayanan, K.B.; Sakthivel, N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci., 2011, 169, 59-79.
[145]
Poinern, G.E.J.; Chapman, P.; Shah, M.; Fawcett, D. Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bull, 2013, 2, 1-7.
[146]
Pourjavadi, A.; Soleyman, R. Novel silver nano-wedges for killing microorganisms. Mater. Res. Bull., 2011, 46, 1860-1865.
[147]
Liu, M.; Guyot-Sionnest, P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B, 2005, 109, 22192-22200.
[148]
Jiang, X.C.; Chen, W.M.; Chen, C.Y.; Xiong, S.X.; Yu, A.B. Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett., 2011, 6, 32.
[149]
Wu, X.; Redmond, P.L.; Liu, H.; Chen, Y.; Steigerwald, M.; Brus, L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. J. Am. Chem. Soc., 2008, 130, 9500-9506.
[150]
Sau, T.K.; Murphy, C.J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc., 2004, 126, 8648-8649.
[151]
Sun, Y.; Mayers, B.; Xia, Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett., 2003, 3, 675-679.
[152]
Shervani, Z.; Ikushima, Y.; Sato, M.; Kawanami, H.; Hakuta, Y.; Yokoyama, T.; Nagase, T.; Kuneida, H.; Aramaki, K. Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym. Sci., 2008, 286, 403-410.
[153]
Taguchi, A.; Fujii, S.; Ichimura, T.; Verma, P.; Inouye, Y.; Kawata, S. Oxygen-assisted shape control in polyol synthesis of silver nanocrystals. Chem. Phys. Lett., 2008, 462, 92-95.
[154]
Tang, S.C.; Meng, X.K.; Lu, H.B.; Zhu, S.P. PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Mater. Chem. Phys., 2009, 116, 464-468.
[155]
Rivero, P.J.; Goicoechea, J.; Urrutia, A.; Arregui, F.J. Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Res. Lett., 2013, 8, 101.
[156]
Meng, X.K.; Tang, S.C.; Vongehr, S. A review on diverse silver nanostructures. J. Mater. Sci. Technol., 2010, 26, 487-522.
[157]
Dong, X.; Ji, X.; Wu, H.; Zhao, L.; Li, J.; Yang, W. Shape control of silver nanoparticles by stepwise citrate reduction. J. Phys. Chem. C, 2009, 113, 6573-6576.
[158]
Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed., 2009, 48, 60-103.
[159]
Chang, S.; Chen, K.; Hua, Q.; Ma, Y.; Huang, W. Evidence for the growth mechanisms of silver nanocubes and nanowires. J. Phys. Chem. C, 2011, 115, 7979-7986.
[160]
Sun, Y.; Yin, Y.; Mayers, B.; Herricks, T.; Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater., 2002, 14, 4736-4745.
[161]
Millstone, J.E.; Hurst, S.J.; Métraux, G.S.; Cutler, J.I.; Mirkin, C.A. Colloidal gold and silver triangular nanoprisms. Small, 2009, 5, 646-664.
[162]
Ashkarran, A.A. A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Curr. Appl. Phys., 2010, 10, 1442-1447.
[163]
Ghosh, S.K.; Kundu, S.; Mandal, M.; Nath, S.; Pal, T. Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. J. Nanopart. Res., 2003, 5, 577-583.
[164]
Olenin, A.Y.; Lisichkin, G.V. Metal nanoparticles in condensed media: Preparation and the bulk and surface structural dynamics. Russ. Chem. Rev., 2011, 80, 605-630.
[165]
Suresh, A.K.; Wang, W.; Pelletier, D.A.; Moon, J.W.; Gu, B.; Mortensen, N.P.; Allison, D.P.; Joy, D.C.; Phelps, T.J.; Doktycz, M.J. Silver nanocrystallites: Facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ. Sci. Technol., 2010, 44, 5210-5215.
[166]
Sintubin, L.; De Windt, W.; Dick, J.; Mast, J.; van der Ha, D.; Verstraete, W.; Boon, N. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol., 2009, 84, 741-749.
[167]
Pugazhenthiran, N.; Anandan, S.; Kathiravan, G.; Udaya Prakash, N.K.; Crawford, S.; Ashokkumar, M. Microbial synthesis of silver nanoparticles by Bacillus sp. J. Nanopart. Res., 2009, 11, 1811-1815.
[168]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram positive and gram-negative bacteria. Nanomedicine, 2010, 6, 103-109.
[169]
Sagar, G.; Ashok, B. Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. Eur. J. Exp. Biol., 2010, 2, 1654-1658.
[170]
Rai, M.; Birla, S.; Ingle, A.P.; Gupta, I.; Gade, A.; Abd-Elsalam, K.; Marcato, P.D.; Duran, N. Nanosilver: An inorganic nanoparticle with myriad potential applications. Nanotechnol. Rev., 2014, 3, 281-310.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy