[1]
Meyerson, M.; Gabriel, S.; Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet., 2010, 11(10), 685-696.
[2]
Li, H.; Ruan, J.; Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res., 2008, 18(11), 1851-1858.
[3]
Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14), 1754-1760.
[4]
Lunter, G.; Goodson, M. Stampy: A statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res., 2010, 21(6), 936-939.
[5]
Li, H.; Handsaker, B.; Wysoker, A. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16), 2078-2079.
[6]
McLean, C.Y.; Reno, P.L.; Pollen, A.A. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature, 2011, 471(7337), 216-219.
[7]
Xue, W.; Xing, Y.; Weng, X. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet., 2008, 40(6), 761-767.
[8]
Chen, K.; Wallis, J.W.; McLellan, M.D. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods, 2009, 6(9), 677-681.
[9]
Ye, K.; Schulz, M.H.; Long, Q.; Apweiler, R.; Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics, 2009, 25(21), 2865-2871.
[10]
Xie, C.; Tammi, M.T. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics, 2009, 10(1), 80.
[11]
Alkan, C.; Coe, B.P.; Eichler, E.E. Genome structural variation discovery and genotyping. Nat. Rev. Genet., 2011, 12(5), 363-376.
[12]
Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res., 2011, 21(6), 974-984.
[13]
Medvedev, P.; Stanciu, M.; Brudno, M. Computational methods for discovering structural variation with next-generation sequencing. Nat. Methods, 2009, 6(Suppl. 11), S13-S20.
[14]
Qi, J.; Zhao, F. inGAP-sv: a novel scheme to identify and visualize structural variation from paired end mapping data. Nucleic Acids Res., 2011, 39(Suppl. 2), W567-W75.
[15]
Zhang, J.; Wang, J.; Wu, Y. An improved approach for accurate and efficient calling of structural variations with low-coverage sequence data. BMC Bioinformatics, 2012, 13(Suppl. 6), S6.
[16]
Benjamini, Y.; Speed, T.P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res., 2012, 40(10), e72.
[17]
Yoon, S.; Xuan, Z.; Makarov, V.; Ye, K.; Sebat, J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res., 2009, 19(9), 1586-1592.
[18]
Ouyang, S; Zhu, W; Hamilton, J The TIGR Rice Genome
Annotation Resource: improvements and new features. Nucleic
Acids Res, 2007 35(Database): D883-D87.
[19]
Rausch, T.; Zichner, T.; Schlattl, A.; Stütz, A.M.; Benes, V.; Korbel, J.O. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 2012, 28(18), i333-i9.
[20]
Fan, X; Abbott, TE; Larson, D BreakDancer: Identification of
Genomic Structural Variation from Paired-End Read Mapping.
Curr Protoc Bioinformatics 2014 45: 15.6.1-11.
[21]
Xie, W.; Feng, Q.; Yu, H. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc. Natl. Acad. Sci. USA, 2010, 107(23), 10578-10583.
[22]
Horiuchi, Y.; Harushima, Y.; Fujisawa, H. A simple optimization can improve the performance of single feature polymorphism detection by Affymetrix expression arrays. BMC Genomics, 2010, 11(1), 315.
[23]
Wang, L.; Xie, W.; Chen, Y. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J., 2010, 61(5), 752-766.
[24]
Kent, W.J. BLAT--the BLAST-like alignment tool. Genome Res., 2002, 12(4), 656-664.