[1]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent Insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14, 523-534.
[2]
Needle, D.; Lountos, G.T.; Waugh, D.S. Structures of the middle east respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity. Acta Crystallogr. Sect D Biol. Crystallogr., 2015, 71, 1102-1111.
[3]
Kilianski, A.; Mielech, A.M.; Deng, X.; Baker, S.C. Assessing activity and inhibition of middle east respiratory syndrome coronavirus papain-like and 3c-like proteases using luciferase-based biosensors. J. Virol., 2013, 87, 11955-11962.
[4]
Stobart, C.C.; Sexton, N.R.; Munjal, H.; Lu, X.; Molland, K.L.; Tomar, S.; Mesecar, A.D.; Denison, M.R. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J. Virol., 2013, 87, 12611-12618.
[5]
Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J., 2002, 21, 3213-3224.
[6]
Chen, H.; Wei, P.; Huang, C.; Tan, L.; Liu, Y.; Lai, L. Only one protomer is active in the dimer of SARS 3C-like proteinase. J. Biol. Chem., 2006, 281, 13894-13898.
[7]
Ren, Z.; Yan, L.; Zhang, N.; Guo, Y.; Yang, C.; Lou, Z.; Rao, Z. The Newly emerged SARS-Like coronavirus HCoV-EMC also Has an “Achilles’ Heel”: Current effective inhibitor targeting a 3C-like protease. Protein Cell, 2013, 4, 248-250.
[8]
Tomar, S.; Johnston, M.L.; St. John, S.E.; Osswald, H.L.; Nyalapatla, P.R.; Paul, L.N.; Ghosh, A.K.; Denison, M.R.; Mesecar, A.D. Ligand-Induced dimerization of middle east respiratory syndrome (MERS) coronavirus Nsp5 protease (3CL Pro). J. Biol. Chem., 2015, 290, 19403-19422.
[9]
Deng, X.; StJohn, S.E.; Osswald, H.L.; O’Brien, A.; Banach, B.S.; Sleeman, K.; Ghosh, A.K.; Mesecar, A.D.; Baker, S.C. Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance. J. Virol., 2014, 88, 11886-11898.
[10]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[11]
Li, H.; Leung, K.S.; Wong, M.H. Idock: A Multithreaded virtual screening tool for flexible ligand docking.In 2012 IEEE Symposium on Computational Intelligence and Computational Biology, CIBCB 2012, 2012, pp. 77-84.
[12]
Ballester, P.J.; Richards, W.G. Ultrafast Shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem., 2007, 28, 1711-1723.
[13]
Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52, 1757-1768.
[14]
Yang, J.M.; Chen, C.C. GEMDOCK: A generic evolutionary method for molecular docking. Proteins Struct. Funct. Genet , 2004, 55, 288-304.
[15]
Page, R.D. TreeView: An Application to display phylogenetic trees on personal computers. Comput. Appl. Biosci., 1996, 12, 357-358.
[16]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx.In Methods in molecular biology (Clifton, N.J.); 2015; Vol. 1263, pp. 243-250.
[17]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[18]
Daina, A.; Michielin, O.; Zoete, V. ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model., 2014, 54, 3284-3301.
[19]
Daina, A.; Zoete, V. A BOILED-Egg To predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 1117-1121.
[20]
O’Boyle, N.M.; Morley, C.; Hutchison, G.R. Pybel: A python wrapper for the openbabel cheminformatics toolkit. Chem. Cent. J., 2008, 2, 5.
[21]
Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K-Y. Coronaviruses - Drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15, 327-347.
[22]
Falzarano, D.; de Wit, E.; Rasmussen, A.L.; Feldmann, F.; Okumura, A.; Scott, D.P.; Brining, D.; Bushmaker, T.; Martellaro, C.; Baseler, L.; Benecke, A.G.; Katze, M.G.; Munster, V.J.; Feldmann, H. Treatment with interferon-α2b and ribavirin improves outcome in mers-cov–infected rhesus macaques. Nat. Med., 2013, 19, 1313-1317.
[23]
Cheng, K.W.; Cheng, S.C.; Chen, W.Y.; Lin, M.H.; Chuang, S.J.; Cheng, I.H.; Sun, C.Y.; Chou, C.Y. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of middle east respiratory syndrome coronavirus. Antiviral Res., 2015, 115, 9-16.
[24]
Wu, C.Y.; Jan, J.T.; Ma, S.H.; Kuo, C.J.; Juan, H.F.; Cheng, Y.S.; Hsu, H.H.; Huang, H.C.; Wu, D.; Brik, A.; Liang, F.S.; Liu, R.S.; Fang, J.M.; Chen, S.T.; Liang, P.H.; Wong, C.H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA, 2004, 101, 10012-10017.
[25]
Sydnes, M.O.; Hayashi, Y.; Sharma, V.K.; Hamada, T.; Bacha, U.; Barrila, J.; Freire, E.; Kiso, Y. Synthesis of glutamic acid and glutamine peptides possessing a trifluoromethyl ketone group as SARS-CoV 3CL Protease inhibitors. Tetrahedron, 2006, 62, 8601-8609.