[1]
Sawant, B.; Khan, T. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomed. Pharmacother., 2017, 96, 1478-1490. [http://dx.doi.org/10.1016/j.biopha.2017.11.127]. [PMID: 29223551].
[2]
Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence, 2013, 4(2), 119-128. [http://dx.doi.org/10.4161/viru.22913]. [PMID: 23302789].
[3]
Tsui, C.; Kong, E.F.; Jabra-Rizk, M.A. Pathogenesis of Candida albicans biofilm. Pathog. Dis., 2016, 74(4)ftw018 [http://dx.doi.org/10.1093/femspd/ftw018]. [PMID: 26960943].
[4]
Antinori, S.; Milazzo, L.; Sollima, S.; Galli, M.; Corbellino, M. Candidemia and invasive candidiasis in adults: A narrative review. Eur. J. Intern. Med., 2016, 34, 21-28. [http://dx.doi.org/10.1016/j.ejim.2016.06.029]. [PMID: 27394927].
[5]
Neves, N.A.; Carvalho, L.P.; De Oliveira, M.A.M.; Giraldo, P.C.; Bacellar, O.; Cruz, Á.A.; Carvalho, E.M. Association between atopy and recurrent vaginal candidiasis. Clin. Exp. Immunol., 2005, 142(1), 167-171. [http://dx.doi.org/10.1111/j.1365-2249.2005.02891.x]. [PMID: 16178872].
[6]
Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; Zaoutis, T.E.; Sobel, J.D. Clinical practice guideline for the management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis., 2016, 62(4), 1-50. [http://dx.doi.org/10.1093/cid/civ1194].
[7]
Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front. Microbiol., 2017, 7(7), 2173. [http://dx.doi.org/10.3389/fmicb.2016.02173]. [PMID: 28127295].
[8]
Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol., 2017, 133, 86-96. [http://dx.doi.org/10.1016/j.bcp.2016.11.019]. [PMID: 27884742].
[9]
Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clin. Microbiol. Rev., 1999, 12(1), 40-79. [http://dx.doi.org/10.1128/CMR.12.1.40]. [PMID: 9880474].
[10]
Bondaryk, M.; Kurzątkowski, W.; Staniszewska, M. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development. Postepy Dermatol. Alergol., 2013, 30(5), 293-301. [http://dx.doi.org/10.5114/pdia.2013.38358]. [PMID: 24353489].
[11]
Kanafani, Z.A.; Perfect, J.R. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis., 2008, 46(1), 120-128. [http://dx.doi.org/10.1086/524071]. [PMID: 18171227].
[12]
Berkow, E.L.; Lockhart, S.R. Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist., 2017, 10(10), 237-245. [http://dx.doi.org/10.2147/IDR.S118892]. [PMID: 28814889].
[13]
Marcos-Zambrano, L.J.; Escribano, P.; Sánchez, C.; Muñoz, P.; Bouza, E.; Guinea, J. Antifungal resistance to fluconazole and echinocandins is not emerging in yeast isolates causing fungemia in a Spanish tertiary care center. Antimicrob. Agents Chemother., 2014, 58(8), 4565-4572. [http://dx.doi.org/10.1128/AAC.02670-14]. [PMID: 24867979].
[14]
Müller, F.M.; Weig, M.; Peter, J.; Walsh, T.J. Azole cross-resistance to ketoconazole, fluconazole, itraconazole and voriconazole in clinical Candida albicans isolates from HIV-infected children with oropharyngeal candidosis. J. Antimicrob. Chemother., 2000, 46(2), 338-340. [http://dx.doi.org/10.1093/jac/46.2.338]. [PMID: 10933673].
[15]
García Rodríguez, L.A.; Duque, A.; Castellsague, J.; Pérez-Gutthann, S.; Stricker, B.H. A cohort study on the risk of acute liver injury among users of ketoconazole and other antifungal drugs. Br. J. Clin. Pharmacol., 1999, 48(6), 847-852. [http://dx.doi.org/10.1046/j.1365-2125.1999.00095.x]. [PMID: 10594489].
[16]
Kathiravan, M.K.; Salake, A.B.; Chothe, A.S.; Dudhe, P.B.; Watode, R.P.; Mukta, M.S.; Gadhwe, S. The biology and chemistry of antifungal agents: A review. Bioorg. Med. Chem., 2012, 20(19), 5678-5698. [http://dx.doi.org/10.1016/j.bmc.2012.04.045]. [PMID: 22902032].
[17]
Gao, M.; Wang, H.; Zhu, L. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis. Cell. Physiol. Biochem., 2016, 40(3-4), 727-742. [http://dx.doi.org/10.1159/000453134]. [PMID: 27915337].
[18]
Yordanov, M.; Dimitrova, P.; Patkar, S.; Saso, L.; Ivanovska, N. Inhibition of Candida albicans extracellular enzyme activity by selected natural substances and their application in Candida infection. Can. J. Microbiol., 2008, 54(6), 435-440. [http://dx.doi.org/10.1139/W08-029]. [PMID: 18535628].
[19]
Seleem, D.; Benso, B.; Noguti, J.; Pardi, V.; Murata, R.M. In vitro and in vivo antifungal activity of lichochalcone-A against Candida albicans biofilms. PLoS One, 2016, 11(6)e0157188 [http://dx.doi.org/10.1371/journal.pone.0157188]. [PMID: 27284694].
[20]
Rai Rima, S.; Singha, R.; Brahma, P.; Sanyal, K. Epigenetic determinants of phenotypic plasticity in Candida albicans. Fungal Biol. Rev., 2018, 32, 10-19. [http://dx.doi.org/10.1016/j.fbr.2017.07.002].
[21]
Lagree, K.; Desai, J.V.; Finkel, J.S.; Lanni, F. Microscopy of fungal biofilms. Curr. Opin. Microbiol., 2018, 43, 100-107. [http://dx.doi.org/10.1016/j.mib.2017.12.008]. [PMID: 29414442].
[22]
Hirota, K.; Yumoto, H.; Sapaar, B.; Matsuo, T.; Ichikawa, T.; Miyake, Y. Pathogenic factors in Candida biofilm-related infectious diseases. J. Appl. Microbiol., 2017, 122(2), 321-330. [http://dx.doi.org/10.1111/jam.13330]. [PMID: 27770500].
[23]
Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol., 2015, 69, 71-92. [http://dx.doi.org/10.1146/annurev-micro-091014-104330]. [PMID: 26488273].
[24]
Sun, D.; Hurdle, J.G.; Lee, R.; Lee, R.; Cushman, M.; Pezzuto, J.M. Evaluation of flavonoid and resveratrol chemical libraries reveals abyssinone II as a promising antibacterial lead. ChemMedChem, 2012, 7(9), 1541-1545. [http://dx.doi.org/10.1002/cmdc.201200253]. [PMID: 22847956].
[25]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246. [http://dx.doi.org/10.3390/nu2121231]. [PMID: 22254006].
[26]
Vetrani, C.; Vitale, M.; Bozzetto, L.; Della Pepa, G.; Cocozza, S.; Costabile, G.; Mangione, A.; Cipriano, P.; Annuzzi, G.; Rivellese, A.A. Association between different dietary polyphenol subclasses and the improvement in cardiometabolic risk factors: evidence from a randomized controlled clinical trial. Acta Diabetol., 2018, 55(2), 149-153. [http://dx.doi.org/10.1007/s00592-017-1075-x]. [PMID: 29151225].
[27]
Vitale, M.; Vaccaro, O.; Masulli, M.; Bonora, E.; Del Prato, S.; Giorda, C.B.; Nicolucci, A.; Squatrito, S.; Auciello, S.; Babini, A.C.; Bani, L.; Buzzetti, R.; Cannarsa, E.; Cignarelli, M.; Cigolini, M.; Clemente, G.; Cocozza, S.; Corsi, L.; D’Angelo, F.; Dall’Aglio, E.; Di Cianni, G.; Fontana, L.; Gregori, G.; Grioni, S.; Giordano, C.; Iannarelli, R.; Iovine, C.; Lapolla, A.; Lauro, D.; Laviola, L.; Mazzucchelli, C.; Signorini, S.; Tonutti, L.; Trevisan, R.; Zamboni, C.; Riccardi, G.; Rivellese, A.A. Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: The TOSCA.IT study. Clin. Nutr., 2017, 36(6), 1686-1692. [http://dx.doi.org/10.1016/j.clnu.2016.11.002]. [PMID: 27890487].
[28]
Luo, Y.; Shang, P.; Li, D. Luteolin: a flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front. Pharmacol., 2017, 8, 692. [http://dx.doi.org/10.3389/fphar.2017.00692]. [PMID: 29056912].
[29]
Farhat, G.; Drummond, S.; Al-Dujaili, E.A.S. Polyphenols and their role in obesity management: a systematic review of randomized clinical trials. Phytother. Res., 2017, 31(7), 1005-1018. [http://dx.doi.org/10.1002/ptr.5830]. [PMID: 28493374].
[30]
Li, M.; Shi, A.; Pang, H.; Xue, W.; Li, Y.; Cao, G.; Yan, B.; Dong, F.; Li, K.; Xiao, W.; He, G.; Du, G.; Hu, X. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J. Ethnopharmacol., 2014, 156, 210-215. [http://dx.doi.org/10.1016/j.jep.2014.08.031]. [PMID: 25219601].
[31]
Bondonno, N.P.; Bondonno, C.P.; Blekkenhorst, L.C.; Considine, M.J.; Maghzal, G.; Stocker, R.; Woodman, R.J.; Ward, N.C.; Hodgson, J.M.; Croft, K.D. Flavonoid-rich apple improves endothelial function in individuals at risk for cardiovascular disease: a randomized controlled clinical trial. Mol. Nutr. Food Res., 2018, 62(3)1700674 [http://dx.doi.org/10.1002/mnfr.201700674]. [PMID: 29086478].
[32]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles:
Structure, Reactions, Synthesis, and Applications., 2nd ed;
Richard, A.H.; Pamela, C., Eds.; Lippincott Williams and
Wilkins: New York. 2006.
[33]
Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem., 2013, 69, 735-753. [http://dx.doi.org/10.1016/j.ejmech.2013.08.053]. [PMID: 24099993].
[34]
Jiang, N.; Doseff, A.I.; Grotewold, E. Flavones: From Biosynthesis to Health Benefits. Plants (Basel), 2016, 5(2), 27. [http://dx.doi.org/10.3390/plants5020027]. [PMID: 27338492].
[35]
Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Pharmacol. Rep., 2017, 3(6), 423-446. [http://dx.doi.org/10.1007/s40495-017-0113-2]. [PMID: 29399439].
[36]
Lee, H.; Woo, E.R.; Lee, D.G. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res., 2018, 18(1)foy003 [http://dx.doi.org/10.1093/femsyr/foy003]. [PMID: 29346565].
[37]
Ozçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol., 2011, 49(4), 396-402. [http://dx.doi.org/10.3109/13880209.2010.519390]. [PMID: 21391841].
[38]
Smiljkovic, M.; Stanisavljevic, D.; Stojkovic, D.; Petrovic, I.; Marjanovic Vicentic, J.; Popovic, J.; Golic Grdadolnik, S.; Markovic, D.; Sankovic-Babice, S.; Glamoclija, J.; Stevanovic, M.; Sokovic, M. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J., 2017, 16(16), 795-807. [PMID: 28827996].
[39]
Cheah, H.L.; Lim, V.; Sandai, D. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS One, 2014, 9(4)e95951 [http://dx.doi.org/10.1371/journal.pone.0095951]. [PMID: 24781056].
[40]
Mamadalieva, N.Z.; Herrmann, F.; El-Readi, M.Z.; Tahrani, A.; Hamoud, R.; Egamberdieva, D.R.; Azimova, S.S.; Wink, M. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J. Pharm. Pharmacol., 2011, 63(10), 1346-1357. [http://dx.doi.org/10.1111/j.2042-7158.2011.01336.x]. [PMID: 21899551].
[41]
Martins, N.; Ferreira, I.C.F.R.; Henriques, M.; Silva, S. In vitro anti-candida activity of Glycyrrhiza glabra L. Ind. Crops Prod., 2016, 83, 81-85. [http://dx.doi.org/10.1016/j.indcrop.2015.12.029].
[42]
Shahzad, M.; Sherry, L.; Rajendran, R.; Edwards, C.A.; Combet, E.; Ramage, G. Utilising polyphenols for the clinical management of Candida albicans biofilms. Int. J. Antimicrob. Agents, 2014, 44(3), 269-273. [http://dx.doi.org/10.1016/j.ijantimicag.2014.05.017]. [PMID: 25104135].
[43]
Mendes, A.; Mores, A.U.; Carvalho, A.P.; Rosa, R.T.; Samaranayake, L.P.; Rosa, E.A. Candida albicans biofilms produce more secreted aspartyl protease than the planktonic cells. Biol. Pharm. Bull., 2007, 30(9), 1813-1815. [http://dx.doi.org/10.1248/bpb.30.1813]. [PMID: 17827747].
[44]
Zhou, X.; Wang, F.; Zhou, R.; Song, X.; Xie, M. Apigenin:
A current review on its beneficial biological activities J.
Food Biochem, 2017, 41, e12376. [http://dx.doi.org/10.1111/jfbc.12376].
[45]
Xu, Y.; Xin, Y.; Diao, Y.; Lu, C.; Fu, J.; Luo, L.; Yin, Z. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PLoS One, 2011, 6(12)e29169 [http://dx.doi.org/10.1371/journal.pone.0029169]. [PMID: 22216199].
[46]
Venigalla, M.; Gyengesi, E.; Münch, G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen. Res., 2015, 10(8), 1181-1185. [http://dx.doi.org/10.4103/1673-5374.162686]. [PMID: 26487830].
[47]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978. [http://dx.doi.org/10.1007/s11095-010-0089-7]. [PMID: 20306120].
[48]
Cao, Y.; Dai, B.; Wang, Y.; Huang, S.; Xu, Y.; Cao, Y.; Gao, P.; Zhu, Z.; Jiang, Y. In vitro activity of baicalein against Candida albicans biofilms. Int. J. Antimicrob. Agents, 2008, 32(1), 73-77. [http://dx.doi.org/10.1016/j.ijantimicag.2008.01.026]. [PMID: 18374543].
[49]
Huang, S.; Cao, Y.Y.; Dai, B.D.; Sun, X.R.; Zhu, Z.Y.; Cao, Y.B.; Wang, Y.; Gao, P.H.; Jiang, Y.Y. In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole. Biol. Pharm. Bull., 2008, 31(12), 2234-2236. [http://dx.doi.org/10.1248/bpb.31.2234]. [PMID: 19043205].
[50]
Shirley, K.P.; Windsor, L.J.; Eckert, G.J.; Gregory, R.L. In Vitro effects of plantago major extract, aucubin, and baicalein on Candida albicans biofilm formation, metabolic activity, and cell surface hydrophobicity. J. Prosthodont., 2017, 26(6), 508-515. [http://dx.doi.org/10.1111/jopr.12411]. [PMID: 26618515].
[51]
Fu, Z.; Lu, H.; Zhu, Z.; Yan, L.; Jiang, Y.; Cao, Y. Combination of baicalein and Amphotericin B accelerates Candida albicans apoptosis. Biol. Pharm. Bull., 2011, 34(2), 214-218. [http://dx.doi.org/10.1248/bpb.34.214]. [PMID: 21415530].
[52]
Salazar-Aranda, R.; Granados-Guzmán, G.; Pérez-Meseguer, J.; González, G.M.; de Torres, N.W. Activity of polyphenolic compounds against Candida glabrata. Molecules, 2015, 20(10), 17903-17912. [http://dx.doi.org/10.3390/molecules201017903]. [PMID: 26426003].
[53]
Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol., 2017, 76, 76-83. [http://dx.doi.org/10.1016/j.archoralbio.2016.08.030]. [PMID: 27659902].
[54]
Miyazaki, Y.; Ichimura, A.; Sato, S.; Fujii, T.; Oishi, S.; Sakai, H.; Takeshima, H. The natural flavonoid myricetin inhibits gastric H+, K+-ATPase. Eur. J. Pharmacol., 2018, 820, 217-221. [http://dx.doi.org/10.1016/j.ejphar.2017.12.042]. [PMID: 29274333].
[55]
Rocha, G.R.; Florez Salamanca, E.J.; de Barros, A.L.; Lobo, C.I.V.; Klein, M.I. Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans. BMC Complement. Altern. Med., 2018, 18(1), 61. [http://dx.doi.org/10.1186/s12906-018-2132-x]. [PMID: 29444673].
[56]
Kashyap, D.; Sharma, A.; Singh Tuli, H.; Sak, K.; Punia, S.; Mukherjee, T. Kaempferol – A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J. Funct. Foods, 2017, 30, 203-219. [http://dx.doi.org/10.1016/j.jff.2017.01.022].
[57]
Shao, J.; Zhang, M.; Wang, T.; Li, Y.; Wang, C. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Pharm. Biol., 2016, 54(6), 984-992. [http://dx.doi.org/10.3109/13880209.2015.1091483]. [PMID: 26459663].
[58]
Li, X.; Tian, Y.; Wang, T.; Lin, Q.; Feng, X.; Jiang, Q.; Liu, Y.; Chen, D. Role of the p-coumaroyl moiety in the antioxidant and cytoprotective effects of flavonoid glycosides: comparison of astragalin and tiliroside. Molecules, 2017, 22(7)E1165 [http://dx.doi.org/10.3390/molecules22071165]. [PMID: 28704976].
[59]
Süzgeç-Selçuka, S.; Birteksöz, A.S. Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities. S. Afr. J. Bot., 2011, 77(1), 170-174. [http://dx.doi.org/10.1016/j.sajb.2010.07.017].
[60]
Lee, J.; Mitchell, A.E. Pharmacokinetics of quercetin absorption from apples and onions in healthy humans. J. Agric. Food Chem., 2012, 60(15), 3874-3881. [http://dx.doi.org/10.1021/jf3001857]. [PMID: 22439822].
[61]
Gehrke, I.T.; Neto, A.T.; Pedroso, M.; Mostardeiro, C.P.; Da Cruz, I.B.; Silva, U.F.; Ilha, V.; Dalcol, I.I.; Morel, A.F. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae). J. Ethnopharmacol., 2013, 148(2), 486-491. [http://dx.doi.org/10.1016/j.jep.2013.04.043]. [PMID: 23684720].
[62]
Singh, B.N.; Upreti, D.K.; Singh, B.R.; Pandey, G.; Verma, S.; Roy, S.; Naqvi, A.H.; Rawat, A.K. Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob. Agents Chemother., 2015, 59(4), 2153-2168. [http://dx.doi.org/10.1128/AAC.03599-14]. [PMID: 25645848].
[63]
Vashisth, P.; Nikhil, K.; Pemmaraju, S.; Pruthi, P.; Mallick, V.; Singh, H. Antibiofilm activity of quercetin-encapsulated cytocompatible nanofibers against Candida albicans. J. Bioact. Compat. Polym., 2013, 28(6), 652-665. [http://dx.doi.org/10.1177/0883911513502279].
[64]
Wagner, C.; Fachinetto, R.; Dalla Corte, C.L.; Brito, V.B.; Severo, D.; de Oliveira Costa Dias, G.; Morel, A.F.; Nogueira, C.W.; Rocha, J.B. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res., 2006, 1107(1), 192-198. [http://dx.doi.org/10.1016/j.brainres.2006.05.084]. [PMID: 16828712].
[65]
Valentová, K.; Vrba, J.; Bancířová, M.; Ulrichová, J.; Křen, V. Isoquercitrin: pharmacology, toxicology, and metabolism. Food Chem. Toxicol., 2014, 68, 267-282. [http://dx.doi.org/10.1016/j.fct.2014.03.018]. [PMID: 24680690].
[66]
Jun, J.E.; Woo, E.R.; Lee, D.G. Isoquercitrin, isolated from Aster yomena triggers ROS-mediated apoptosis in Candida albicans. J. Funct. Foods, 2016, 22, 347-357. [http://dx.doi.org/10.1016/j.jff.2016.01.041].
[67]
Yun, J.; Lee, H.; Ko, H.J.; Woo, E.R.; Lee, D.G. Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochim. Biophys. Acta, 2015, 1848(2), 695-701. [http://dx.doi.org/10.1016/j.bbamem.2014.11.019]. [PMID: 25445674].
[68]
Gullon, B.; Lu-Chau, T.; Moreira, M.T.; Lema, J.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol., 2017, 67, 220-235. [http://dx.doi.org/10.1016/j.tifs.2017.07.008].
[69]
Han, Y. Rutin has therapeutic effect on septic arthritis caused by Candida albicans. Int. Immunopharmacol., 2009, 9(2), 207-211. [http://dx.doi.org/10.1016/j.intimp.2008.11.002]. [PMID: 19041425].
[70]
Siler, B.; Zivković, S.; Banjanac, T.; Cvetković, J.; Nestorović Živković, J.; Cirić, A.; Soković, M.; Mišić, D. Centauries as underestimated food additives: antioxidant and antimicrobial potential. Food Chem., 2014, 147, 367-376. [http://dx.doi.org/10.1016/j.foodchem.2013.10.007]. [PMID: 24206732].
[71]
Araruna, M.K.; Brito, S.A.; Morais-Braga, M.F.; Santos, K.K.; Souza, T.M.; Leite, T.R.; Costa, J.G.; Coutinho, H.D. Evaluation of antibiotic & antibiotic modifying activity of pilocarpine & rutin. Indian J. Med. Res., 2012, 135, 252-254. [PMID: 22446871].
[72]
Johann, S.; Mendes, B.G.; Missau, F.C.; de Resende, M.A.; Pizzolatti, M.G. Antifungal activity of five species of Polygala. Braz. J. Microbiol., 2011, 42(3), 1065-1075. [http://dx.doi.org/10.1590/S1517-83822011000300027]. [PMID: 24031724].
[73]
Xia, E.; He, X.; Li, H.; Wu, S.; Li, S.; Deng, G. Biological
activities of polyphenols from grapes. In Polyphenols in
human health and disease; Watson, R.R.; Preedy, V.R.; Zibadi
S., Ed.; Academic Press San Diego. 2014, 5, pp. 47-58. http://dx.doi.org/10.1016/B978-0-12-398456-2.00005-0]
[74]
Yilmaz, Y. Novel uses of catechin in foods. Trends Food Sci. Technol., 2006, 17, 64-71. [http://dx.doi.org/10.1016/j.tifs.2005.10.005].
[75]
Anand, J.; Rai, N. Anticandidal synergistic activity of green tea catechins, antimycotics and copper sulphate as a mean of combinational drug therapy against candidiasis. J. Mycol. Med., 2017, 27(1), 33-45. [http://dx.doi.org/10.1016/j.mycmed.2016.08.004]. [PMID: 27743771].
[76]
Mendes de Toledo, C.E.; Santos, P.R.; Palazzo de Mello, J.C.; Dias Filho, B.P.; Nakamura, C.V.; Ueda-Nakamura, T. Antifungal properties of crude extracts, fractions and purified compounds from bark of Curatella americana L. (Dilleniaceae) against Candida species. Evid. Based Complement. Alternat. Med., 2015.2015673962 [http://dx.doi.org/10.1155/2015/673962]. [PMID: 26347790].
[77]
Navarro-Martínez, M.D.; García-Cánovas, F.; Rodríguez-López, J.N. Tea polyphenol epigallocatechin-3-gallate inhibits ergosterol synthesis by disturbing folic acid metabolism in Candida albicans. J. Antimicrob. Chemother., 2006, 57(6), 1083-1092. [http://dx.doi.org/10.1093/jac/dkl124]. [PMID: 16585130].
[78]
Chen, M.; Zhai, L.; Arendrup, M.C. In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species. Med. Mycol., 2015, 53(2), 194-198. [http://dx.doi.org/10.1093/mmy/myu073]. [PMID: 25605775].
[79]
CLSI. Clinical and Laboratory Standards Institute. Reference
Method for Broth Dilution Antifungal Susceptibility
Testing of Yeasts; Approved Standard—Second Edition,
M27-A2 Vol. 22 No. 15, Clinical and Laboratory Standards
Institute Standards, Wayne, PA.
[80]
EUCAST. European Committee on Antimicrobial Susceptibility
Testing, Antifungal Agents Breakpoint tables for interpretation
of MICs. Version 9.0, valid from 2018-02-12.
[81]
Esch, H.L.; Kleider, C.; Scheffler, A.; Lehmann, L. Isoflavones: Toxicological Aspects and Efficacy.Nutraceuticals efficacy, safety and toxicity; Gupta, R.C., Ed.; Elsevier Science, Academic press, 2016, Vol. 34, pp. 465-478.
[82]
Kang, M.R.; Park, K.H.; Oh, S.J.; Yun, J.; Lee, C.W.; Lee, M.Y.; Han, S.B.; Kang, J.S. Cardiovascular protective effect of glabridin: Implications in LDL oxidation and inflammation. Int. Immunopharmacol., 2015, 29(2), 914-918. [http://dx.doi.org/10.1016/j.intimp.2015.10.020]. [PMID: 26526087].
[83]
Liu, W.; Li, L.P.; Zhang, J.D.; Li, Q.; Shen, H.; Chen, S.M.; He, L.J.; Yan, L.; Xu, G.T.; An, M.M.; Jiang, Y.Y. Synergistic antifungal effect of glabridin and fluconazole. PLoS One, 2014, 9(7)e103442 [http://dx.doi.org/10.1371/journal.pone.0103442]. [PMID: 25058485].
[84]
Messier, C.; Grenier, D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses, 2011, 54(6), e801-e806. [http://dx.doi.org/10.1111/j.1439-0507.2011.02028.x]. [PMID: 21615543].
[85]
das Neves. M.V.; da Silva, T.M.; Lima, Ede.O.; da Cunha, E.V.; Oliveira, Ede.J. Isoflavone formononetin from red propolis acts as a fungicide against Candida sp. Braz. J. Microbiol., 2016, 47(1), 159-166. [http://dx.doi.org/10.1016/j.bjm.2015.11.009]. [PMID: 26887239].
[86]
Mbaveng, A.T.; Kuete, V.; Ngameni, B.; Beng, V.P.; Ngadjui, B.T.; Meyer, J.J.; Lall, N. Antimicrobial activities of the methanol extract and compounds from the twigs of Dorstenia mannii (Moraceae). BMC Complement. Altern. Med., 2012, 12, 83. [http://dx.doi.org/10.1186/1472-6882-12-83]. [PMID: 22747736].
[87]
Belofsky, G.; Kolaczkowski, M.; Adams, E.; Schreiber, J.; Eisenberg, V.; Coleman, C.M.; Zou, Y.; Ferreira, D. Fungal ABC transporter-associated activity of isoflavonoids from the root extract of Dalea formosa. J. Nat. Prod., 2013, 76(5), 915-925. [http://dx.doi.org/10.1021/np4000763]. [PMID: 23631483].
[88]
Shakhatreh, M.A.; Al-Smadi, M.L.; Khabour, O.F.; Shuaibu, F.A.; Hussein, E.I.; Alzoubi, K.H. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives. Drug Des. Devel. Ther., 2016, 10, 3653-3660. [http://dx.doi.org/10.2147/DDDT.S116312]. [PMID: 27877017].
[89]
Gabriela, N.; Rosa, A.M.; Catiana, Z.I.; Soledad, C.; Mabel, O.R.; Esteban, S.J.; Veronica, B.; Daniel, W.; Ines, I.M. The effect of Zuccagnia punctata, an Argentine medicinal plant, on virulence factors from candida species. Nat. Prod. Commun., 2014, 9(7), 933-936. [http://dx.doi.org/10.1177/1934578X1400900712]. [PMID: 25230496].
[90]
Sun, J.; Ding, W-X.; Hong, X-P.; Zang, K-Y.; Zou, Y. Synthesis and antimicrobial activities of 4-aryl-3,4-dihydrocoumarins and 4-arylcoumarins. Chem. Nat. Compd., 2012, 48(1), 16-22. [http://dx.doi.org/10.1007/s10600-012-0149-9].
[91]
Khan, M.K. E-Huma, Z.; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal., 2014, 33(1), 85-104. [http://dx.doi.org/10.1016/j.jfca.2013.11.004].
[92]
Das, S.; Ghosh, P.; Koley, S.; Singha Roy, A. Binding of naringin and naringenin with hen egg white lysozyme: A spectroscopic investigation and molecular docking study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 192, 211-221. [http://dx.doi.org/10.1016/j.saa.2017.11.015]. [PMID: 29145059].
[93]
Funari, C.S.; Gullo, F.P.; Napolitano, A.; Carneiro, R.L.; Mendes-Giannini, M.J.; Fusco-Almeida, A.M.; Piacente, S.; Pizza, C.; Silva, D.H. Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem., 2012, 135(3), 2086-2094. [http://dx.doi.org/10.1016/j.foodchem.2012.06.077]. [PMID: 22953960].
[94]
Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol., 2000, 56(1), 3-12. [http://dx.doi.org/10.1016/S0168-1605(00)00218-X]. [PMID: 10857921].
[95]
Takemoto, J.K.; Remsberg, C.M.; Yáñez, J.A.; Vega-Villa, K.R.; Davies, N.M. Stereospecific analysis of sakuranetin by high-performance liquid chromatography: pharmacokinetic and botanical applications. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 875(1), 136-141. [http://dx.doi.org/10.1016/j.jchromb.2008.07.019]. [PMID: 18676186].
[96]
Gong, Y.; Qin, X.Y.; Zhai, Y.Y.; Hao, H.; Lee, J.; Park, Y.D. Inhibitory effect of hesperetin on α-glucosidase: Molecular dynamics simulation integrating inhibition kinetics. Int. J. Biol. Macromol., 2017, 101, 32-39. [http://dx.doi.org/10.1016/j.ijbiomac.2017.03.072]. [PMID: 28322965].
[97]
Golfakhrabadi, F.; Shams Ardakani, M.R.; Saeidnia, S.; Akbarzadeh, T.; Yousefbeyk, F.; Jamalifar, H.; Khanavi, M. In vitro antimicrobial and acetylcholinesterase inhibitory activities of coumarins from Ferulago carduchorum. Med. Chem. Res., 2016, 25, 1623-1629. [http://dx.doi.org/10.1007/s00044-016-1595-x].
[98]
Mandalari, G.; Bennett, R.N.; Bisignano, G.; Trombetta, D.; Saija, A.; Faulds, C.B.; Gasson, M.J.; Narbad, A. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J. Appl. Microbiol., 2007, 103(6), 2056-2064. [http://dx.doi.org/10.1111/j.1365-2672.2007.03456.x]. [PMID: 18045389].
[99]
Vega-Villa, K.R.; Remsberg, C.M.; Podelnyk, K.L.; Davies, N.M. Stereospecific high-performance liquid chromatographic assay of isosakuranetin in rat urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 875(1), 142-147. [http://dx.doi.org/10.1016/j.jchromb.2008.05.018]. [PMID: 18514595].
[100]
Finger, D.; Machado, C.S.; Torres, Y.R.; Quináia, S.P.; Thomaz, A.C.G.; Gobbo, A.R.; Monteiro, M.C.; Ferreira, A.G.; Sawaya, A.C.H.F.; Eberlin, M.N. Antifungal bioassay-guided fractionation of an oil extract of propolis. J. Food Qual., 2013, 36(5), 291-301. [http://dx.doi.org/10.1111/jfq.12039].
[101]
Kasote, D.; Ahmad, A.; Chen, W.; Combrinck, S.; Viljoen, A. HPTLC-MS as an efficient hyphenated technique for the rapid identification of antimicrobial compounds from propolis. Phytochem. Lett., 2015, 11, 326-331. [http://dx.doi.org/10.1016/j.phytol.2014.08.017].
[102]
Katerere, D.R.; Gray, A.I.; Nash, R.J.; Waigh, R.D. Phytochemical and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia, 2012, 83(5), 932-940. [http://dx.doi.org/10.1016/j.fitote.2012.04.011]. [PMID: 22546149].
[103]
Peralta, M.A.; da Silva, M.A.; Ortega, M.G.; Cabrera, J.L.; Paraje, M.G. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine, 2015, 22(11), 975-980. [http://dx.doi.org/10.1016/j.phymed.2015.07.003]. [PMID: 26407939].
[104]
Ge, F.; Tian, E.; Wang, L.; Li, X.; Zhu, Q.; Wang, Y.; Zhong, Y.; Ge, R.S. Taxifolin suppresses rat and human testicular androgen biosynthetic enzymes. Fitoterapia, 2018, 125, 258-265. [http://dx.doi.org/10.1016/j.fitote.2018.01.017]. [PMID: 29402482].
[105]
Mishra, S.; Singh, S.; Misra, K. Restraining pathogenicity in Candida albicans by taxifolin as an inhibitor of Ras1-pka pathway. Mycopathologia, 2017, 182(11-12), 953-965. [http://dx.doi.org/10.1007/s11046-017-0170-4]. [PMID: 28681317].
[106]
Castañeda-Ovando, A.; Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem., 2009, 113(4), 859-871. [http://dx.doi.org/10.1016/j.foodchem.2008.09.001].
[107]
Pal Singh, J.; Kaur, A.; Singh, N.; Nim, L.; Shevkani, K.; Kaur, H.; Singh Arora, D. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. Lebensm. Wiss. Technol., 2016, 65, 1025-1030. [http://dx.doi.org/10.1016/j.lwt.2015.09.038].
[108]
Maertens, J.A. History of the development of azole derivatives. Clin. Microbiol. Infect., 2004, 10(Suppl. 1), 1-10. [http://dx.doi.org/10.1111/j.1470-9465.2004.00841.x]. [PMID: 14748798].
[109]
Roemer, T.; Krysan, D.J. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med., 2014, 4(5)019703 [http://dx.doi.org/10.1101/cshperspect.a019703]. [PMID: 24789878].
[110]
Pea, F.; Lewis, R.E. Overview of antifungal dosing in invasive candidiasis. J. Antimicrob. Chemother., 2018, 73(Suppl. 1), i33-i43. [PMID: 29304210].
[111]
Smiljkovic, M.; Matsoukas, M.T.; Kritsi, E.; Zelenko, U.; Grdadolnik, S.G.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sankovic-Babic, S.; Glamoclija, J.; Fotopoulou, T.; Koufaki, M.; Zoumpoulakis, P.; Sokovic, M. Nitrate esters of heteroaromatic compounds as novel Candida albicans CYP51 enzyme inhibitors. ChemMedChem, 2018, 13(3), 251-258. [http://dx.doi.org/10.1002/cmdc.201700602]. [PMID: 29235267].
[112]
Thamban Chandrika, N.; Shrestha, S.K.; Ngo, H.X.; Howard, K.C.; Garneau-Tsodikova, S. Novel fluconazole derivatives with promising antifungal activity. Bioorg. Med. Chem., 2018, 26(3), 573-580. [http://dx.doi.org/10.1016/j.bmc.2017.12.018]. [PMID: 29279242].
[113]
Shrestha, S.K.; Garzan, A.; Garneau-Tsodikova, S. Novel alkylated azoles as potent antifungals. Eur. J. Med. Chem., 2017, 133, 309-318. [http://dx.doi.org/10.1016/j.ejmech.2017.03.075]. [PMID: 28395217].
[114]
Fakhim, H.; Emami, S.; Vaezi, A.; Hashemi, S.M.; Faeli, L.; Diba, K.; Dannaoui, E.; Badali, H. In vitro activities of novel azole compounds ATTAF-1 and ATTAF-2 against fluconazole-susceptible and -resistant isolates of Candida species. Antimicrob. Agents Chemother., 2016, 61(1), 01106-001116. [PMID: 27795371].
[115]
Thamban Chandrika, N.; Shrestha, S.K.; Ngo, H.X.; Tsodikov, O.V.; Howard, K.C.; Garneau-Tsodikova, S. Alkylated piperazines and piperazine-azole hybrids as antifungal agents. J. Med. Chem., 2018, 61(1), 158-173. [http://dx.doi.org/10.1021/acs.jmedchem.7b01138]. [PMID: 29256601].
[116]
Yates, C.M.; Garvey, E.P.; Shaver, S.R.; Schotzinger, R.J.; Hoekstra, W.J. Design and optimization of highly-selective, broad spectrum fungal CYP51 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(15), 3243-3248. [http://dx.doi.org/10.1016/j.bmcl.2017.06.037]. [PMID: 28651982].
[117]
Mellado, E.; Diaz-Guerra, T.M.; Cuenca-Estrella, M.; Rodriguez-Tudela, J.L. Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J. Clin. Microbiol., 2001, 39(7), 2431-2438. [http://dx.doi.org/10.1128/JCM.39.7.2431-2438.2001]. [PMID: 11427550].
[118]
Fu, B.; Wu, M.; Huang, L.; Wu, Q.; Wang, S.; Chai, X. Synthesis and bioactivity evaluation of novel azoles containing dithiocarbamate moieties. Med. Chem. Res., 2017, 26(10), 2491-2498. [http://dx.doi.org/10.1007/s00044-017-1948-0].
[119]
Zhao, D.; Zhao, S.; Zhao, L.; Zhang, X.; Wei, P.; Liu, C.; Hao, C.; Sun, B.; Su, X.; Cheng, M. Discovery of biphenyl imidazole derivatives as potent antifungal agents: Design, synthesis, and structure-activity relationship studies. Bioorg. Med. Chem., 2017, 25(2), 750-758. [http://dx.doi.org/10.1016/j.bmc.2016.11.051]. [PMID: 27955926].
[120]
Uppuluri, P.; Srinivasan, A.; Ramasubramanian, A.; Lopez-Ribot, J.L. Effects of fluconazole, amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion. Antimicrob. Agents Chemother., 2011, 55(7), 3591-3593. [http://dx.doi.org/10.1128/AAC.01701-10]. [PMID: 21518839].
[121]
Lamfon, H.; Porter, S.R.; McCullough, M.; Pratten, J. Susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole: a longitudinal study. J. Antimicrob. Chemother., 2004, 53(2), 383-385. [http://dx.doi.org/10.1093/jac/dkh071]. [PMID: 14729749].
[122]
Brito, G.N.; Inocêncio, A.C.; Querido, S.M.; Jorge, A.O.; Koga-Ito, C.Y. In vitro antifungal susceptibility of Candida spp. oral isolates from HIV-positive patients and control individuals. Braz. Oral Res., 2011, 25(1), 28-33. [http://dx.doi.org/10.1590/S1806-83242011005000001]. [PMID: 21271179].
[123]
Douglas, L.J. Candida biofilms and their role in infection. Trends Microbiol., 2003, 11(1), 30-36. [http://dx.doi.org/10.1016/S0966-842X(02)00002-1]. [PMID: 12526852].
[124]
Katragkou, A.; Chatzimoschou, A.; Simitsopoulou, M.; Dalakiouridou, M.; Diza-Mataftsi, E.; Tsantali, C.; Roilides, E. Differential activities of newer antifungal agents against Candida albicans and Candida parapsilosis biofilms. Antimicrob. Agents Chemother., 2008, 52(1), 357-360. [http://dx.doi.org/10.1128/AAC.00856-07]. [PMID: 17938192].
[125]
El-Azizi, M.; Farag, N.; Khardori, N. Antifungal activity of amphotericin B and voriconazole against the biofilms and biofilm-dispersed cells of Candida albicans employing a newly developed in vitro pharmacokinetic model. Ann. Clin. Microbiol. Antimicrob., 2015, 3, 14-21. [http://dx.doi.org/10.1186/s12941-015-0083-3].