Generic placeholder image

Current Dentistry

Editor-in-Chief

ISSN (Print): 2542-579X
ISSN (Online): 2542-5803

Research Article

Antibacterial Profile of Copaifera multijuga Oleoresin and Hydroalcoholic Extract of Leaves Against Oral Pathogens

Author(s): Iane Pereira Pimenta, Fariza Abrão, Jonas Joaquim Mangabeira da Silva, Larissa Costa Oliveira, Hervé Louis Ghislain Rogez, Sérgio Ricardo Ambrósio, Rodrigo Cássio Sola Veneziani, Jairo Kenupp Bastos and Carlos Henrique Gomes Martins*

Volume 1, Issue 1, 2019

Page: [53 - 60] Pages: 8

DOI: 10.2174/2542579X01666180629100020

Abstract

Background: Copaifera multijuga are widely used as medicinal plants in Brazil. Of the various ethnopharmacological indications of copaiba oleoresins, the antimicrobial activity had been highlighted.

Objective: This study aimed to evaluate the oleoresin and the hydroalcoholic extract of leaves from Copaifera multijuga against oral pathogens in the sessile and in the planktonic modes.

Methods: Standard strains from the American Type Culture Collection and clinical isolates which cause both cariogenic and endodontic infections were used. Was evaluated in terms of its Minimum Inhibitory Concentration (MIC) values by the broth microdilution method in 96-well microplates, Minimum Bactericidal Concentration (MBC) and biofilm eradication assay.

Results: The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays showed that the oleoresin was effective against some the bacterial strains. Assessment of the antibiofilm activity of hydroalcoholic extract of leaves from C. multijuga against the evaluated microaerophilic bacteria in the sessile mode gave IC50 values of 318.0 and 695.6 µg/mL against S. mitis (ATCC 49456) and A. actinomycetemcomintans (ATCC 43717), respectively. As for the assayed anaerobic bacteria, the hydroalcoholic extract of leaves gave IC50 of 4554.0, 2218.0, and 600.1 µg/mL against F. nucleatum (Clinical isolate), P. gingivalis (ATCC 33277), and P. micros (Clinical isolate), respectively, whereas the oleoresin afforded IC50 of 357.1 µg/mL against P. gingivalis (ATCC 33277).

Conclusion: The oleoresin and hydroalcoholic extract of leaves displayed satisfactory activity against the main oral pathogens in both sessile and planktonic modes. The oleoresin and hydroalcoholic extracts of leaves from C. multijuga are potential candidates for the development of new products for dental and oral care.

Keywords: Copaifera multijuga, dental caries, endodontic infections, biofilm, hydroalcoholic extract, oleoresin.

Graphical Abstract

[1]
Jeon JG, Rosalen PL, Falsetta ML, Koo H. Natural products in caries research: Current (limited) knowledge, challenges and future perspectives. Caries Res 2011; 45(3): 243-63.
[2]
Nakamoto T, Rawls HR. Fluoride exposure in early life as the possible root cause of disease in later life. J Clin Pediatr Dent 2018; 42(5): 325-30.
[3]
Clark MB, Slayton RL. Fluoride use in caries prevention in the primary care setting. Pediatrics 2014; 134(3): 626-33.
[4]
Carey CM. Focus on fluorides: Update on the use of fluoride for the prevention of dental caries. J Evid Based Dent Pract 2014; 14: 95-102.
[5]
Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet 2007; 369(9555): 51-9.
[6]
Melo MAS. Photodynamic antimicrobial chemotherapy as a strategy for dental caries: Building a more conservative therapy in restorative dentistry. Photomed Laser Surg 2014; 32(11): 1-3.
[7]
Mosci F, Perito S, Bassa S, Capuano A, Marconi PF. The role of Streptococcus mutans in human caries. Minerva Stomatol 1990; 39(5): 413-29.
[8]
Costerton JW, Cheng KJ, Geesey GG, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol 1987; 41: 435-64.
[9]
Banas JA. Virulence properties of Streptococcus mutans. Front Biosci 2004; 1: 1267-77.
[10]
Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet 2007; 369(9555): 51-9.
[11]
Palmer SR, Miller JH, Abranches J, et al. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans. PLoS One 2013; 8: e61358.
[12]
Esberg A, Sheng N, Marell L, et al. Streptococcus mutans adhesin biotypes that match and predict individual caries development. EBioMedicine 2017; 24: 205-15.
[13]
Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 2013; 92(12): 1065-73.
[14]
Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res 2011; 90(3): 294-303.
[15]
Beikler T, Flemmig TF. Oral biofilm-associated diseases: trends and implications for quality of life, systemic health and expenditures. Periodontol 2000 2011; 55(1): 87-103.
[16]
Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8(9): 623-33.
[17]
Gao L, Liu Y, Kim D, et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 2016; 101: 272-84.
[18]
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004; 2(2): 95-108.
[19]
Jhajharia K, Abhishek P, Shetty V, Mehta LK. Biofilm in endodontics: A review. J Int Soc Prev Community Dent 2015; 5(1): 1-12.
[20]
Saoud TM, Ricucci D, Lin LM, Gaengler P. Regeneration and repair in endodontics - A special issue of the regenerative endodontics - A new era in clinical endodontics. Dent J 2016; 4(1): E3.
[21]
Duggan JM, Sedgley CM. Biofilm formation of oral and endodontic enterococcus faecalis. J Endod 2007; 33(7): 815-8.
[22]
Awawdeh L, Jamleh A, Beitawia MA. The antifungal effect of propolis endodontic irrigant with three other irrigation solutions in presence and absence of smear layer: an in vitro study. Iran Endod J 2018; 13(2): 234-9.
[23]
Haapasalo M, Shen Y, Qian W, Gao Y. Irrigation in endodontics. Dent Clin North Am 2010; 54(2): 291-312.
[24]
Clegg MS, Vertucci FJ, Walker C, Belanger M, Britto LR. The effect of exposure to irrigant solutions on apical dentin biofilms in vitro. J Endod 2006; 32(5): 434-7.
[25]
Sen BH, Safavi KE, Spangberg LS. Antifungal effects of sodium hypochlorite and chlorhexidine in root canals. J Endod 1999; 25(4): 235-8.
[26]
Mohammadi Z, Abbott PV. The properties and applications of chlorhexidine in endodontics. Int Endod J 2009; 42(4): 288-302.
[27]
Arslan S, Ozbilge H, Kaya EG, Er O. In vitro antimicrobial activity of propolis, BioPure MTAD, sodium hypochlorite, and chlorhexidine on enterococcus faecalis and Candida albicans. Saudi Med J 2011; 32(5): 479-83.
[28]
Mohammadi Z. Sodium hypochlorite in endodontics: an update review. Int Dent J 2008; 58(6): 329-41.
[29]
Alviano WS, Alviano DS, Diniz CG, et al. In vitro antioxidant potential of medicinal plant extracts and their activities against oral bacteria based on Brazilian folk medicine. Arch Oral Biol 2008; 53(6): 545-52.
[30]
Chinsembu KC. Plants and other natural products used in the management of oral infections and improvement of oral health. Acta Trop 2016; 154: 6-18.
[31]
Poeschl PW, Crepaz V, Russmueller G, Seemann R, Hirschl AM, Ewers R. Endodontic pathogens causing deep neck space infections: clinical impact of different sampling techniques and antibiotic susceptibility. J Endod 2011; 37(9): 1201-5.
[32]
Gomes BP, Jacinto RC, Montagner F, Sousa EL, Ferraz CC. Analysis of the antimicrobial susceptibility of anaerobic bacteria isolated from endodontic infections in Brazil during a period of nine years. J Endod 2011; 37(8): 1058-62.
[33]
Skucaite N, Peciuliene V, Vitkauskiene A, Machiulskiene V. Susceptibility of endodontic pathogens to antibiotics in patients with symptomatic apical periodontitis. J Endod 2010; 36(10): 1611-6.
[34]
Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta 2013; 1830(6): 3670-95.
[35]
Souza AB, Martins CHG, Souza MGM, et al. Antimicrobial activity of terpenoids from copaifera langsdorffii desf against cariogenic bacteria. Phytother Res 2011; 25(2): 215-20.
[36]
Souza AB, Souza MGM, Moreira MA, et al. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecules 2011; 16(11): 9611-9.
[37]
Bardají DKR, Da Silva JJM, Bianchi TC, et al. Copaifera reticulata oleoresin: Chemical characterization and antibacterial properties against oral pathogens. Anaerobe 2016; 40: 18-27.
[38]
Moraes TS, Leandro LF, de Silva LO, et al. In vitro evaluation of Copaifera oblongifolia oleoresin against bacteria causing oral infections and assessment of its cytotoxic potential. Curr Pharm Biotechnol 2016; 17: 894-904.
[39]
Leandro LF, Moraes TS, de Oliveira PF, et al. Assessment of the antibacterial, cytotoxic and mutagenic potential of the phenolic-rich hydroalcoholic extract from Copaifera trapezifolia Hayne leaves. J Med Microbiol 2016; 65: 937-50.
[40]
Abrão F, Alves JA, Andrade G, et al. Antibacterial effect of Copaifera duckei Dwyer oleoresin and its main diterpenes against oral pathogens and their cytotoxic effect. Front Microbiol 2018; 9: 201.
[41]
Diefenbach AL, Muniz FWMG, Oballe HJR, Rösing CK. Antimicrobial activity of copaiba oil (Copaifera ssp.) on oral pathogens: Systematic review. Phytother Res 2018; 32: 586-96.
[42]
Leandro LM, Vargas FS, Barbosa PCS, et al. Chemistry and biological activities of terpenoids from copaiba (copaifera spp.) oleoresins. Molecules 2012; 17(4): 3866-89.
[43]
Veiga Jr VF, Rosas EC, Carvalho MV, et al. Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne-A comparative study. J Ethnopharmacol 2007; 112(2): 248-54.
[44]
Gomes NM, Rezende CM, Fontes SP, et al. Characterization of the antinociceptive and anti-inflammatory activities of fractions obtained from Copaifera multijuga Hayne. J Ethnopharmacol 2010; 128(1): 177-83.
[45]
Santos AO, Ueda-Nakamura T, Dias Filho BP, Veiga Jr VF, Pinto AC, Nakamura CV. Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus. Mem Inst Oswaldo Cruz 2008; 103(3): 277-81.
[46]
Mendonça DE, Onofre SB. Atividade antimicrobiana do óleo-resina produzido pela copaiba – Copaifera multijuga Hayne (Leguminosae). Rev Bras Farmacogn 2009; 19(2B): 577-81.
[47]
Lima SRM, Veiga Jr VF, Christo HB, Pinto AC, Fernandes PD. In vivo and in vitro studies on the anticancer activity of Copaifera multijuga Hayne and its fractions. Phytother Res 2003; 17(9): 1048-53.
[48]
Santiago KB, Conti BJ, Andrade BFMT, et al. Immunomodulatory action of Copaifera spp oleoresins on cytokine production by human monocytes. Biomed Pharmacother 2015; 70: 12-8.
[49]
Furtado RA, de Oliveira PF, Senedese JM, et al. Assessment of genotoxic activity of oleoresins and leaves extracts of six Copaifera species for prediction of potential human risks. J Ethnopharmacol 2018; 221(7): 119-25.
[50]
Clinical and Laboratory Standards Institute . Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, Approved standard(CLSI). Wayne, PA, USA: CLSI 2007.
[51]
Clinical and Laboratory Standards Institute (CLSI) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard M7-A7, 7, 23,. 2009.
[52]
Silva SDC, Souza MGM, Cardoso MJO, et al. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections. Anaerobe 2014; 30: 146-52.
[53]
Barbosa PCS, Wiedemann LSM, Medeiros RD, et al. Phytochemical fingerprints of copaiba oils (copaifera multijuga hayne) determined by multivariate analysis. Chem Biodivers 2013; 10(7): 1350-60.
[54]
Capeletto C, Conterato G, Scapinello J, et al. Chemical composition, antioxidant and antimicrobial activity of guavirova (Campomanesia xanthocarpa Berg) seed extracts obtained by supercritical CO2 and compressed n-butane. J Supercrit Fluids 2015; 110: 32-8.
[55]
Aguiar UM, De Lima SG, Rocha MD, et al. Chemical composition and modulation of antibiotic activity of essential oil of Lantana caatingensis M. (Verbenaceae). Ind Crops Prod 2015; 74: 165-70.
[56]
Dahham SS, Tabana YM, Iqbal MA, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene beta-caryophyllene from the essential oil of aquilaria crassna. Molecules 2015; 20(7): 11808-29.
[57]
Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005; 26(5): 343-56.
[58]
Santos RQ, Kushima H, Rodrigues CM, et al. Byrsonima intermedia A. Juss.: Gastric and duodenal anti-ulcer, antimicrobial and antidiarrheal effects in experimental rodent models. J Ethnopharmacol 2012; 140(2): 203.
[59]
Cascon V, Gilbert B. Characterization of the chemical composition of oleoresins of Copaifera guianensis Desf Copaifera duckei Dwyer and Copaifera multijuga Hayne. Phytochemistry 2000; 55(7): 773-8.
[60]
Veiga Jr VF, Pinto AC. Plantas medicinais: Cura segura? Quim Nova 2005; 28(3): 519-28.
[61]
Salton MRJ. Studies of the bacterial cell wall: IV. The composition of the cell walls of some gram-positive and gram-negative bacteria. Biochim Biophys Acta 1953; 10: 512-23.
[62]
Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 1999; 181: 4725-33.
[63]
Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 2006; 34(5): 3-10.
[64]
Oliveira FQ, Gobira B, Guimaraes C, Batista J, Barreto M, Souza M. Espécies vegetais indicadas na odontologia. Rev Bras Farmacogn 2007; 17(3): 466-76.
[65]
Mysak J, Podzimek S, Sommerova P, et al. Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview. J Immunol Res 2014; 2014: 476068.
[66]
How KY, Song KP, Chan KG. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front Microbiol 2016; 7: 53.
[67]
Gerits E, Verstraeten N, Michiels J. New approaches to combat Porphyromonas gingivalis biofilms. J Oral Microbiol 2017; 9(1): 1300366.
[68]
Granier SA, Moubareck C, Colaneri C, et al. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl Environ Microbiol 2011; 77(8): 2788-90.
[69]
Van Dalen PJ. Van Steenbergen Tim, Cowan MM, Busscher HJ, Graaf J. Description of two morphotypes of Peptostreptococcus micros. Int J Syst Bacteriol 1993; 43(4): 787-93.
[70]
Grenier D, Bouclin R. Contribution of proteases and plasmin-acquired activity in migration of Peptostreptococcus micros through a reconstituted basement membrane. Oral Microbiol Immunol 2006; 21(5): 319-25.
[71]
Tanabe S, Bodet C, Grenier D. Peptostreptococcus micros cell wall elicits a pro-inflammatory response in human macrophages. J Endotoxin Res 2007; 13(4): 219-26.
[72]
Shchipkova AY, Nagaraja HN, Kumar PS. Subgingival Microbial Profiles of Smokers with Periodontitis. J Dent Res 2010; 89(11): 1247-53.
[73]
Fallarero A, Skogman M, Kujala J, et al. (+)-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro. Int J Mol Sci 2013; 14(6): 12054-72.
[74]
Tanner AC, Mathney JM, Kent RL, et al. Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol 2011; 49(4): 1464-74.
[75]
Alves JM, Senedese JM, Leandro LF, et al. Copaifera multijuga oleoresin and its constituent diterpene (−)-copalic acid: genotoxicity and chemoprevention study. Mutat Res 2017; 819: 26-30.

© 2024 Bentham Science Publishers | Privacy Policy