[1]
Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature, 2008, 453, 80-83.
[2]
Joshua, Y.J.; Miao, F.; Pickett, M.D.; Ohlberg, D.A.; Stewart, D.R.; Lau, C.N.; Williams, R.S. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology, 2009, 20215201
[3]
Strachan, J.P.; Yang, J.J.; Montoro, L.A.; Ospina, C.A.; Ramirez, A.J.; Kilcoyne, A.L.D.; Medeiros-Ribeiro, G.; Williams, R.S. Characterization of electroforming-free titanium dioxide memristors. Beilstein J. Nanotechnol., 2013, 4, 467-473.
[4]
Kwon, D.H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.S.; Park, G.S.; Lee, B.; Han, S.; Kim, M.; Hwang, C.S. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol., 2010, 5, 148-153.
[5]
Miao, F.; Joshua, Y.J.; Borghetti, J.; Medeiros-Ribeiro, G.; Williams, R.S. Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current. Nanotechnology, 2011, 22254007
[6]
Yang, J.J.; Borghetti, J.; Murphy, D.; Stewart, D.R.; Williams, R.S. A family of electronically reconfigurable nanodevices. Adv. Mater., 2009, 21, 3754-3758.
[7]
Strukov, D.B.; Williams, R.S. Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys., A Mater. Sci. Process., 2009, 94, 515-519.
[8]
Strukov, D.B.; Borghetti, J.L.; Williams, R.S. Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small, 2009, 5, 1058-1063.
[9]
Sahoo, S.; Prabaharan, S.R.S. Nano-ionic solid state resistive memories (Re-RAM): A review. J. Nanosci. Nanotechnol., 2017, 17, 72-86.
[10]
Dash, C.S.; Prabaharan, S.R.S. All Solid State Nano-ionic Non-volatile Resistive Memories.In: Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: California, 2017.
[11]
Rosário, C.M.M.; Gorshkov, O.N.; Kasatkin, A.P.; Antonov, I.N.; Korolev, D.S.; Mikhaylov, A.N.; Sobolev, N.A. Resistive switching and impedance spectroscopy in SiOx-based metal-oxide-metal trilayers down to helium temperatures. Vacuum, 2015, 122, 293-299.
[12]
Ren, B.; Wang, L.; Wang, L.; Huang, J.; Tang, K.; Lou, Y.; Yuan, D.; Pan, Z.; Xia, Y. Investigation of resistive switching in graphite-like carbon thin film for non-volatile memory applications. Vacuum, 2014, 107, 1-5.
[13]
Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol., 2008, 3, 429-433.
[14]
de Carvalho, R.C.; Betts, A.J.; and Cassidy, J.F. A simple nanoparticle-based TiO2 memristor device and the role of defect chemistry in its operation. J. Solid State Electrochem., 2019, 1-5.
[15]
Park, S.; Noh, J.; Choo, M.; Sheri, A.M.; Chang, M.; Kim, Y.; Kim, C.; Jeon, M.; Lee, B-G.; Lee, B.H.; Hwang, H. Nanoscale RRAM based synaptic electronics: Toward a neuromorphic computing device. Nanotechnology, 2013, 24384009
[16]
Snider, G.S. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology, 2007, 18 365202
[17]
Mead, C. Neuromorphic electronic systems. Proc. IEEE, 1990, 78, 1629-1636.
[18]
Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 2010, 10, 1297-1301.
[19]
Berzina, T.; Smerieri, A.; Bernabo, M.; Pucci, A.; Ruggeri, G.; Erokhin, V.; Fontona, M.P. Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys., 2009, 105124515
[20]
Xia, Q.; Robinett, W.; Cumbie, W.M.; Banerjee, N.; Thomas, B.; Cardinali, T.J.; Yang, J.J.; Wu, W.; Li, X.; Tong, W.M.; Strukov, D.B.; Snider, G.S.; Mederios-Ribeiro, G.; Willliams, R.S. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett., 2009, 9, 3640-3645.
[21]
Robinett, W.; Pickett, M.; Borghetti, J.; Xia, Q.; Gregory, S.; Snider, G.S.; Mederios-Riberio, G.R.; Williams, R.S. A memristor-based non-volatile latch circuit. Nanotechnology, 2010, 21235203
[22]
Muthulakshmi, S.; Dash, C.S.; Prabaharan, S.R.S. Memristor augmented approximate adders and subtractors for image processing applications: An approach. Int. J. Electron. Commun. (AEÜ), 2018, 91, 91-102.
[23]
Driscoll, T.; Quinn, J.; Klein, S.; Kim, H.T.; Kim, B.J.; Pershin, Y.V.; Di Ventra, M.; Basov, D.N. Memristive adaptive filters. Appl. Phys. Lett., 2010, 97 093502
[24]
Heshmatian, S.; Bahiraei, M. Numerical investigation of entropy generation to predict irreversibilities in nanofluid flow within a microchannel: Effects of Brownian diffusion, shear rate and viscosity gradient. Chem. Eng. Sci., 2017, 172, 52-65.
[25]
Bahiraei, M.; Alighardashi, M. Investigating non-Newtonian nanofluid flow in a narrow annulus based on second law of thermodynamics. J. Mol. Liquids., 2016, 219, 117-127.
[26]
Bahiraei, M.; Abdi, F. Development of a model for entropy generation of water-TiO2 nanofluid flow considering nanoparticle migration within a minichannel. Chem. Intell. Lab. Sys., 2016, 157, 16-28.
[27]
Bahiraei, M.; Gharagozloo, K.; Alighardashi, M.; Mazaheri, N. CFD simulation of irreversibilities for laminar flow of a power-law nanofluid within a minichannel with chaotic perturbations: An innovative energy-efficient approach. Energy Convers. Manag., 2017, 144, 374-387.
[28]
Bahiraei, M.; Mazaheri, N.; Alighardashi, M. Development of chaotic advection in laminar flow of a non-Newtonian nanofluid: A novel application for efficient use of energy. Appl. Thermal. Eng., 2017, 124, 1213-1223.
[29]
Dash, C.S.; Sahoo, S.; Prabaharan, S.R.S. Resistive switching and impedance characteristics of M/TiO2-x/TiO2/M nano-ionic memristor. Solid State Ionics., 2018, 324, 218-225.
[30]
Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun., 2016, 7, 12611.
[31]
Gupta, I.; Serb, A.; Khiat, A.; Zeitler, R.; Vassanelli, S.; Prodromakis, T. Real-time encoding and compression of neuronal spikes by metal-oxide memristors. Nat. Commun., 2016, 7, 12805.
[32]
Prabaharan, S.R.S.; Siluvai Michael, M.; Premkumar, T.; Athinarayanaswamy, K.; Mani, A.; Gangadharan, R. Bulk synthesis of submicron powders of LiMn2O4 for secondary Lithium batteries. J. Mater. Chem., 1995, 5, 1035-1037.
[33]
Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129-137.
[34]
Meng, L.J.; dos Santos, M.P. Investigations of titanium oxide films deposited by D.C. reactive magnetron sputtering in different sputtering pressures. Thin Solid Films, 1993, 226, 22-29.
[35]
Dwyer, D.J.; Cameron, S.D.; Gland, J. Surface modification of platinum by titanium dioxide over layers: A case of simple site blocking. Surf. Sci., 1985, 159, 430-442.
[36]
Rocker, G.; Gopel, W. Titanium Over layers on TiO2 (100). Surface. Sci., 1987, 18, 530-558.
[37]
Kumar, P.M.; Badrinarayanan, S.; Sastry, M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films, 2000, 358, 122-130.
[38]
McCafferty, E.; Wightman, J.P. An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Appl. Surf. Sci., 1999, 143, 92-100.
[39]
Mazady, A.; Anwar, M. Memristor: Part I- the underlying physics and conduction mechanism. IEEE Trans. on Electron Devices., 2014, 61, 1054-1061.
[40]
Kamarozaman, N.S.; Mohamed Soder, M.F.; Musa, M.Z.; Bakar, R.A.; Abdullah, W.F.H.; Herman, S.H.; Rusop, M. Effect of post-deposition annealing process on the resistive switching behavior of TiO2 thin films by sol-gel method. Adv. Mater. Res., 2014, 925, 125-129.
[41]
Kim, W.G.; Rhee, S.W. Effect of post annealing on the resistive switching of TiO2 thin film. Microelectron. Eng., 2009, 86, 2153-2156.