Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Titania Based Nano-ionic Memristive Crossbar Arrays: Fabrication and Resistive Switching Characteristics

Author(s): S. Sahoo, P. Manoravi and S.R.S. Prabaharan*

Volume 9, Issue 4, 2019

Page: [486 - 493] Pages: 8

DOI: 10.2174/2210681208666180628122146

Price: $65

Abstract

Introduction: Intrinsic resistive switching properties of Pt/TiO2-x/TiO2/Pt crossbar memory array has been examined using the crossbar (4×4) arrays fabricated by using DC/RF sputtering under specific conditions at room temperature.

Materials and Methods: The growth of filament is envisaged from bottom electrode (BE) towards the top electrode (TE) by forming conducting nano-filaments across TiO2/TiO2-x bilayer stack. Non-linear pinched hysteresis curve (a signature of memristor) is evident from I-V plot measured using Pt/TiO2-x /TiO2/Pt bilayer device (a single cell amongst the 4×4 array is used). It is found that the observed I-V profile shows two distinguishable regions of switching symmetrically in both SET and RESET cycle. Distinguishable potential profiles are evident from I-V curve; in which region-1 relates to the electroformation prior to switching and region-2 shows the switching to ON state (LRS). It is observed that upon reversing the polarity, bipolar switching (set and reset) is evident from the facile symmetric pinched hysteresis profile. Obtaining such a facile switching is attributed to the desired composition of Titania layers i.e. the rutile TiO2 (stoichiometric) as the first layer obtained via controlled post annealing (650oC/1h) process onto which TiO2-x (anatase) is formed (350oC/1h).

Results: These controlled processes adapted during the fabrication step help manipulate the desired potential barrier between metal (Pt) and TiO2 interface. Interestingly, this controlled process variation is found to be crucial for measuring the switching characteristics expected in Titania based memristor. In order to ensure the formation of rutile and anatase phases, XPS, XRD and HRSEM analyses have been carried out.

Conclusion: Finally, the reliability of bilayer memristive structure is investigated by monitoring the retention (104 s) and endurance tests which ensured the reproducibility over 10,000 cycles.

Keywords: Memristor, titanium dioxide, thin film, resistive memory, cross bar arrays, non-volatile memory.

Graphical Abstract

[1]
Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature, 2008, 453, 80-83.
[2]
Joshua, Y.J.; Miao, F.; Pickett, M.D.; Ohlberg, D.A.; Stewart, D.R.; Lau, C.N.; Williams, R.S. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology, 2009, 20215201
[3]
Strachan, J.P.; Yang, J.J.; Montoro, L.A.; Ospina, C.A.; Ramirez, A.J.; Kilcoyne, A.L.D.; Medeiros-Ribeiro, G.; Williams, R.S. Characterization of electroforming-free titanium dioxide memristors. Beilstein J. Nanotechnol., 2013, 4, 467-473.
[4]
Kwon, D.H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.S.; Park, G.S.; Lee, B.; Han, S.; Kim, M.; Hwang, C.S. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol., 2010, 5, 148-153.
[5]
Miao, F.; Joshua, Y.J.; Borghetti, J.; Medeiros-Ribeiro, G.; Williams, R.S. Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current. Nanotechnology, 2011, 22254007
[6]
Yang, J.J.; Borghetti, J.; Murphy, D.; Stewart, D.R.; Williams, R.S. A family of electronically reconfigurable nanodevices. Adv. Mater., 2009, 21, 3754-3758.
[7]
Strukov, D.B.; Williams, R.S. Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys., A Mater. Sci. Process., 2009, 94, 515-519.
[8]
Strukov, D.B.; Borghetti, J.L.; Williams, R.S. Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small, 2009, 5, 1058-1063.
[9]
Sahoo, S.; Prabaharan, S.R.S. Nano-ionic solid state resistive memories (Re-RAM): A review. J. Nanosci. Nanotechnol., 2017, 17, 72-86.
[10]
Dash, C.S.; Prabaharan, S.R.S. All Solid State Nano-ionic Non-volatile Resistive Memories.In: Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: California, 2017.
[11]
Rosário, C.M.M.; Gorshkov, O.N.; Kasatkin, A.P.; Antonov, I.N.; Korolev, D.S.; Mikhaylov, A.N.; Sobolev, N.A. Resistive switching and impedance spectroscopy in SiOx-based metal-oxide-metal trilayers down to helium temperatures. Vacuum, 2015, 122, 293-299.
[12]
Ren, B.; Wang, L.; Wang, L.; Huang, J.; Tang, K.; Lou, Y.; Yuan, D.; Pan, Z.; Xia, Y. Investigation of resistive switching in graphite-like carbon thin film for non-volatile memory applications. Vacuum, 2014, 107, 1-5.
[13]
Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol., 2008, 3, 429-433.
[14]
de Carvalho, R.C.; Betts, A.J.; and Cassidy, J.F. A simple nanoparticle-based TiO2 memristor device and the role of defect chemistry in its operation. J. Solid State Electrochem., 2019, 1-5.
[15]
Park, S.; Noh, J.; Choo, M.; Sheri, A.M.; Chang, M.; Kim, Y.; Kim, C.; Jeon, M.; Lee, B-G.; Lee, B.H.; Hwang, H. Nanoscale RRAM based synaptic electronics: Toward a neuromorphic computing device. Nanotechnology, 2013, 24384009
[16]
Snider, G.S. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology, 2007, 18 365202
[17]
Mead, C. Neuromorphic electronic systems. Proc. IEEE, 1990, 78, 1629-1636.
[18]
Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 2010, 10, 1297-1301.
[19]
Berzina, T.; Smerieri, A.; Bernabo, M.; Pucci, A.; Ruggeri, G.; Erokhin, V.; Fontona, M.P. Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys., 2009, 105124515
[20]
Xia, Q.; Robinett, W.; Cumbie, W.M.; Banerjee, N.; Thomas, B.; Cardinali, T.J.; Yang, J.J.; Wu, W.; Li, X.; Tong, W.M.; Strukov, D.B.; Snider, G.S.; Mederios-Ribeiro, G.; Willliams, R.S. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett., 2009, 9, 3640-3645.
[21]
Robinett, W.; Pickett, M.; Borghetti, J.; Xia, Q.; Gregory, S.; Snider, G.S.; Mederios-Riberio, G.R.; Williams, R.S. A memristor-based non-volatile latch circuit. Nanotechnology, 2010, 21235203
[22]
Muthulakshmi, S.; Dash, C.S.; Prabaharan, S.R.S. Memristor augmented approximate adders and subtractors for image processing applications: An approach. Int. J. Electron. Commun. (AEÜ), 2018, 91, 91-102.
[23]
Driscoll, T.; Quinn, J.; Klein, S.; Kim, H.T.; Kim, B.J.; Pershin, Y.V.; Di Ventra, M.; Basov, D.N. Memristive adaptive filters. Appl. Phys. Lett., 2010, 97 093502
[24]
Heshmatian, S.; Bahiraei, M. Numerical investigation of entropy generation to predict irreversibilities in nanofluid flow within a microchannel: Effects of Brownian diffusion, shear rate and viscosity gradient. Chem. Eng. Sci., 2017, 172, 52-65.
[25]
Bahiraei, M.; Alighardashi, M. Investigating non-Newtonian nanofluid flow in a narrow annulus based on second law of thermodynamics. J. Mol. Liquids., 2016, 219, 117-127.
[26]
Bahiraei, M.; Abdi, F. Development of a model for entropy generation of water-TiO2 nanofluid flow considering nanoparticle migration within a minichannel. Chem. Intell. Lab. Sys., 2016, 157, 16-28.
[27]
Bahiraei, M.; Gharagozloo, K.; Alighardashi, M.; Mazaheri, N. CFD simulation of irreversibilities for laminar flow of a power-law nanofluid within a minichannel with chaotic perturbations: An innovative energy-efficient approach. Energy Convers. Manag., 2017, 144, 374-387.
[28]
Bahiraei, M.; Mazaheri, N.; Alighardashi, M. Development of chaotic advection in laminar flow of a non-Newtonian nanofluid: A novel application for efficient use of energy. Appl. Thermal. Eng., 2017, 124, 1213-1223.
[29]
Dash, C.S.; Sahoo, S.; Prabaharan, S.R.S. Resistive switching and impedance characteristics of M/TiO2-x/TiO2/M nano-ionic memristor. Solid State Ionics., 2018, 324, 218-225.
[30]
Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun., 2016, 7, 12611.
[31]
Gupta, I.; Serb, A.; Khiat, A.; Zeitler, R.; Vassanelli, S.; Prodromakis, T. Real-time encoding and compression of neuronal spikes by metal-oxide memristors. Nat. Commun., 2016, 7, 12805.
[32]
Prabaharan, S.R.S.; Siluvai Michael, M.; Premkumar, T.; Athinarayanaswamy, K.; Mani, A.; Gangadharan, R. Bulk synthesis of submicron powders of LiMn2O4 for secondary Lithium batteries. J. Mater. Chem., 1995, 5, 1035-1037.
[33]
Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129-137.
[34]
Meng, L.J.; dos Santos, M.P. Investigations of titanium oxide films deposited by D.C. reactive magnetron sputtering in different sputtering pressures. Thin Solid Films, 1993, 226, 22-29.
[35]
Dwyer, D.J.; Cameron, S.D.; Gland, J. Surface modification of platinum by titanium dioxide over layers: A case of simple site blocking. Surf. Sci., 1985, 159, 430-442.
[36]
Rocker, G.; Gopel, W. Titanium Over layers on TiO2 (100). Surface. Sci., 1987, 18, 530-558.
[37]
Kumar, P.M.; Badrinarayanan, S.; Sastry, M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films, 2000, 358, 122-130.
[38]
McCafferty, E.; Wightman, J.P. An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium. Appl. Surf. Sci., 1999, 143, 92-100.
[39]
Mazady, A.; Anwar, M. Memristor: Part I- the underlying physics and conduction mechanism. IEEE Trans. on Electron Devices., 2014, 61, 1054-1061.
[40]
Kamarozaman, N.S.; Mohamed Soder, M.F.; Musa, M.Z.; Bakar, R.A.; Abdullah, W.F.H.; Herman, S.H.; Rusop, M. Effect of post-deposition annealing process on the resistive switching behavior of TiO2 thin films by sol-gel method. Adv. Mater. Res., 2014, 925, 125-129.
[41]
Kim, W.G.; Rhee, S.W. Effect of post annealing on the resistive switching of TiO2 thin film. Microelectron. Eng., 2009, 86, 2153-2156.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy