[1]
Fang, J.; Liu, T.; Chen, Z.; Wang, Y.; Wei, W.; Yue, X.; Jiang, Z. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale, 2016, 8(16), 8899-8909.
[2]
Sood, D.; Tripathi, C.C. Broadband ultrathin low-profile metamaterial microwave absorber. Appl. Phys., A, 2016, 122(4), 332-339.
[3]
Khajehazad, H.; Ghaffary, T.; Ebrahimzadeh, M. Microwave absorption properties of Fe2O3/paraffin wax nanocomposite. Asian J. Chem., 2013, 25(13), 7651-7653.
[4]
Vinayasree, S.; Soloman, M.A.; Sunny, V.; Mohanan, P.; Kurian, P.; Anantharaman, M.R. A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications. Compos. Sci. Technol., 2013, 82, 69-75.
[5]
Sunny, V.; Kurian, P.; Mohanan, P.; Joy, P.A.; Anantharaman, M.R. A flexible microwave absorber based on nickel ferrite nanocomposite. J. Alloys Compd., 2010, 489(1), 297-303.
[6]
Ghaforyan, H.; Ebrahimzadeh, M.; Ghaffary, T.; Rezazadeh, H.; Jahromi, Z.S. Microwave absorbing properties of Ni nanowires grown in nanoporous anodic alumina templates. Chinese J. Phys., 2014, 52(1-I), 233-238.
[7]
Li, X.; Feng, J.; Du, Y.; Bai, J.; Fan, H.; Zhang, H.; Peng, Y.; Li, F. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A, 2015, 3(10), 5535-5546.
[8]
Feng, J.; Pu, F.; Li, Z.; Li, X.; Hu, X.; Bai, J. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon, 2016, 104, 214-225.
[9]
Wen, F.; Hou, H.; Xiang, J.; Zhang, X.; Su, Z.; Yuan, S.; Liu, Z. Fabrication of carbon encapsulated Co3O4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber. Carbon, 2015, 89, 372-377.
[10]
Panwar, R.; Puthucheri, S.; Agarwala, V.; Singh, D. Fractal frequency-selective surface embedded thin broadband microwave absorber coatings using heterogeneous composites. IEEE Trans. Microw. Theory Tech., 2015, 63(8), 2438-2448.
[11]
Li, W.; Wu, T.; Wang, W.; Zhai, P.; Guan, J. Broadband patterned magnetic microwave absorber. J. Appl. Phys., 2014, 116(4), 044110.
[12]
Moitra, D.; Chandel, M.; Ghosh, B.K.; Jani, R.K.; Patra, M.K.; Vadera, S.R.; Ghosh, N.N. A simple ‘in situ’ co-precipitation method for the preparation of multifunctional CoFe2O4 reduced graphene oxide nanocomposites: Excellent microwave absorber and highly efficient magnetically separable recyclable photocatalyst for dye degradation. RSC Advances, 2016, 6(80), 76759-76772.
[13]
Ren, X.; Fan, H.; Cheng, Y. Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites. Appl. Phys., A, 2016, 122(5), 506.
[14]
Huang, X.; Zhang, J.; Lai, M.; Sang, T. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J. Alloys Compd., 2015, 627, 367-373.
[15]
Jiang, L.; Wang, Z.; Geng, D.; Wang, Y.; An, J.; He, J.; Li, D.; Liu, W.; Zhang, Z. Carbon-encapsulated Fe nanoparticles embedded in organic polypyrrole polymer as a high-performance microwave absorber. J. Phys. Chem. C, 2016, 120(49), 28320-28329.
[16]
Widanarto, W.; Amirudin, F.; Ghoshal, S.K.; Effendi, M.; Cahyanto, W.T. Structural and magnetic properties of La3+ substituted barium− natural nanoferrites as microwave absorber in X-band. J. Magn. Magn. Mater., 2017, 426, 483-486.
[17]
Alam, R.S.; Moradi, M.; Rostami, M.; Nikmanesh, H.; Moayedi, R.; Bai, Y. Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater., 2015, 381, 1-9.
[18]
Nikmanesh, H.; Moradi, M.; Bordbar, G.H.; Alam, R.S. Synthesis of multi-walled carbon nanotube/doped barium hexaferrite nanocomposites: An investigation of structural, magnetic and microwave absorption properties. Ceram. Int., 2016, 42(13), 14342-14349.
[19]
Zhao, B.; Guo, X.; Zhao, W.; Deng, J.; Fan, B.; Shao, G.; Bai, Z.; Zhang, R. Facile synthesis of yolk–shell Ni@void@SnO2 (Ni3 Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res., 2017, 10(1), 331-343.
[20]
Cheng, Y.; Ji, G.; Li, Z.; Lv, H.; Liu, W.; Zhao, Y.; Cao, J.; Du, Y. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: Effect of Fe/Co atomic ratio. J. Alloys Compd., 2017, 704, 289-295.
[21]
Zhang, Y.; Quan, B.; Liu, W.; Liang, X.; Ji, G.; Du, Y. A facile one-pot strategy for fabrication of carbon-based microwave absorbers: Effects on annealing and paraffin content. Dalton Trans., 2017, 46(28), 9097-9102.
[22]
Ding, D.; Wang, Y.; Li, X.; Qiang, R.; Xu, P.; Chu, W.; Han, X.; Du, Y. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon, 2017, 111, 722-732.
[23]
Guo, Y.; Liu, S.; Zhang, Z.; Dong, S.; Wang, H. Fabrication of ZnO/Fe rod-like core-shell structure as high-performance microwave absorber. J. Alloys Compd., 2017, 694, 549-555.
[24]
Li, Z.; Li, X.; Zong, Y.; Tan, G.; Sun, Y.; Lan, Y.; He, M.; Ren, Z.; Zheng, X. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon, 2017, 115, 493-502.
[25]
Song, C.; Yin, X.; Han, M.; Li, X.; Hou, Z.; Zhang, L.; Cheng, L. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon, 2017, 116, 50-58.
[26]
Wei, S.; Wang, X.; Zhang, B.; Yu, M.; Zheng, Y.; Wang, Y.; Liu, J. Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J., 2017, 314, 477-487.
[27]
Zhang, Y.; Wang, X.; Cao, M. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res., 2018, 11(3), 1426-1436.
[28]
Zheng, Y.; Wang, X.; Wei, S.; Zhang, B.; Yu, M.; Zhao, W.; Liu, J. Fabrication of porous graphene-Fe3O4 hybrid composites with outstanding microwave absorption performance. Compos., Part A Appl. Sci. Manuf., 2017, 95, 237-247.
[29]
Arief, I.; Biswas, S.; Bose, S. FeCo anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces, 2017, 9(22), 19202-19214.
[30]
Wang, X.X.; Ma, T.; Shu, J.C.; Cao, M.S. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J., 2018, 332, 321-330.
[31]
Zhang, N.; Huang, Y.; Zong, M.; Ding, X.; Li, S.; Wang, M. Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chem. Eng. J., 2017, 308, 214-221.
[32]
Jia, X.; Wang, J.; Zhu, X.; Wang, T.; Yang, F.; Dong, W.; Wang, G.; Yang, H.; Wei, F. Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd., 2017, 697, 138-146.
[33]
Qiu, X.; Wang, L.; Zhu, H.; Guan, Y.; Zhang, Q. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale, 2017, 9(22), 7408-7418.
[34]
Wang, L.; Xing, H.; Gao, S.; Ji, X.; Shen, Z. Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C, 2017, 5(8), 2005-2014.
[35]
Deng, J.; Li, S.; Zhou, Y.; Liang, L.; Zhao, B.; Zhang, X.; Zhang, R. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J. Colloid Interface Sci., 2018, 509, 406-413.
[36]
Yang, H.J.; Cao, W.Q.; Zhang, D.Q.; Su, T.J.; Shi, H.L.; Wang, W.Z.; Yuan, J.; Cao, M.S. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces, 2015, 7(13), 7073-7077.
[37]
Zhang, Y.; Huang, Y.; Chen, H.; Huang, Z.; Yang, Y.; Xiao, P.; Zhou, Y.; Chen, Y. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon, 2016, 105, 438-447.
[38]
Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. CoNi@SiO2@ TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater., 2016, 28(3), 486-490.
[39]
Wang, J.; Zhou, H.; Zhuang, J.; Liu, Q. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers. Phys. Chem. Chem. Phys., 2015, 17(5), 3802-3812.
[40]
Li, Y.; Cao, W.Q.; Yuan, J.; Wang, D.W.; Cao, M.S. Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J. Mater. Chem. C, 2015, 3(36), 9276-9282.
[41]
Li, Z.; Li, X.; Zong, Y.; Tan, G.; Sun, Y.; Lan, Y.; He, M.; Ren, Z.; Zheng, X. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon, 2017, 115, 493-502.
[42]
Xiang, J.; Li, J.; Zhang, X.; Ye, Q.; Xu, J.; Shen, X. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A, 2014, 2(40), 16905-16914.
[43]
Ghaforyan, H.; Ebrahimzadeh, M. Self-organized formation of hexagonal pore arrays in anodic alumina fabrication. J. Mater. Sci. Eng. B, 2011, 1(1B), 82-86.
[44]
Jani, R.K.; Patra, M.K.; Saini, L.; Shukla, A.; Singh, C.P.; Vadera, S.R. Tuning of microwave absorption properties and electromagnetic interference (EMI) shielding effectiveness of nanosize conducting black-silicone rubber composites over 8-18 GHz. Prog. Electromagnetics Res., 2017, 58, 193-204.
[45]
Zhang, X.J.; Wang, G.S.; Cao, W.Q.; Wei, Y.Z.; Liang, J.F.; Guo, L.; Cao, M.S. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces, 2014, 6(10), 7471-7478.
[46]
Liu, S.; Li, L.; Zheng, S.; Qi, S. Microwave absorption properties of double-layer absorbers based on spindle magnetite nanoparticles and flower-like copper sulfide microspheres. J. Mater. Sci. Mater. Electron., 2018, 29, 8978-8988.
[47]
Cheng, Y.Z.; Cheng, Z.Z.; Mao, X.S.; Gong, R.Z. Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure. Materials, 2017, 10(11), 1241-1253.
[48]
Kuang, D.; Hou, L.; Yu, B.; Liang, B.; Deng, L.; Huang, H.; Ma, S.; He, J.; Wang, S. Gram-scale synthesis, thermal stability, magnetic properties, and microwave absorption application of extremely small Co–C core–shell nanoparticles. Mater. Res. Express, 2017, 4(7), 075044.
[49]
Guo, Y.; Liu, S.; Zhang, Z.; Dong, S.; Wang, H. Fabrication of ZnO/Fe rod-like core-shell structure as high-performance microwave absorber. J. Alloys Compd., 2017, 694, 549-555.
[50]
Wei, S.; Wang, X.; Zhang, B.; Yu, M.; Zheng, Y.; Wang, Y.; Liu, J. Preparation of hierarchical core-shell C@ NiCo2O4@ Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J., 2017, 314, 477-487.
[51]
Zhang, S.; Qi, Z.; Zhao, Y.; Jiao, Q.; Ni, X.; Wang, Y.; Chang, Y.; Ding, C. Core/shell structured composites of hollow spherical CoFe2O4 and CNTs as absorbing materials. J. Alloys Compd., 2017, 694, 309-312.
[52]
Feng, C.; Liu, X.; Or, S.W.; Ho, S.L. Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe2O4/NiFe2O4 nanocapsules. AIP Adv., 2017, 7(5), 056403.
[53]
Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. CoNi@ SiO2@ TiO2 and CoNi@ Air@ TiO2 microspheres with strong wideband microwave absorption. Adv. Mater., 2016, 28(3), 486-490.
[54]
Cheng, Y.; He, B.; Zhao, J.; Gong, R. Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial. J. Electron. Mater., 2017, 46(2), 1293-1299.
[55]
Wen, F.; Zhang, F.; Liu, Z. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C, 2011, 115(29), 14025-14030.
[56]
Liu, J.; Xu, J.; Liu, Z.; Liu, X.; Che, R. Hierarchical magnetic core-shell nanostructures for microwave absorption: Synthesis, microstructure and property studies. Sci. China Chem., 2014, 57(1), 3-12.
[57]
Wei, Y.; Yue, J.; Tang, X.; Huang, X. Enhanced microwave-absorbing properties of FeCo magnetic film-functionalized silicon carbide fibers fabricated by a radio frequency magnetron method. Ceram. Int., 2017, 43(18), 16371-16375.
[58]
Wang, C.; Lv, R.; Huang, Z.; Kang, F.; Gu, J. Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites. J. Alloys Compd., 2011, 509(2), 494-498.
[59]
Xu, J.; Qi, X.; Luo, C.; Qiao, J.; Xie, R.; Sun, Y.; Zhong, W.; Fu, Q.; Pan, C. Synthesis and enhanced microwave absorption properties: A strongly hydrogenated TiO2 nanomaterial. Nanotechnology, 2017, 28(42), 425701-425787.
[60]
Zhu, C.L.; Zhang, M.L.; Qiao, Y.J.; Xiao, G.; Zhang, F.; Chen, Y.J. Fe3O4/TiO2 core/shell nanotubes: Synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C, 2010, 114(39), 16229-16235.