[1]
Smith, R.S.; Harris, S.G.; Phipps, R.; Iglewski, B. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J. Bacteriol., 2002, 184, 1132-1139.
[2]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science, 1999, 284, 1318-1322.
[3]
Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35, 322-332.
[4]
Butler, M.T.; Wang, Q.F.; Harshey, R.M. Cell density and mobility protect swarming bacteria against antibiotics. Proc. Natl. Acad. Sci. USA, 2010, 107, 3776-3781.
[5]
Overhage, J.; Bains, M.; Brazas, M.D.; Hancock, R.E.W. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J. Bacteriol., 2008, 190, 2671-2679.
[6]
Wilder, C.N.; Diggle, S.P.; Schuster, M. Cooperation and cheating in Pseudomonas aeruginosa: The roles of the las, rhl and pqs quorum-sensing systems. Isme J., 2011, 5, 1332-1343.
[7]
Pesci, E.C.; Pearson, J.P.; Seed, P.C.; Iglewski, B.H. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol., 1997, 179, 3127-3132.
[8]
Pesci, E.C.; Milbank, J.B.J.; Pearson, J.P.; McKnight, S.; Kende, A.S.; Greenberg, E.P.; Iglewski, B.H. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 1999, 96, 11229-11234.
[9]
Nicas, T.I.; Iglewski, B.H. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can. J. Microbiol., 1985, 31, 387-392.
[10]
de Kievit, T.R.; Iglewski, B.H. Bacterial quorum sensing in pathogenic relationships. Infect. Immun., 2000, 68, 4839-4849.
[11]
Van Delden, C.; Iglewski, B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerging . Infect. Dis., 1998, 4, 551-560.
[12]
Hentzer, M.; Givskov, M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Invest., 2003, 112, 1300-1307.
[13]
Donabedian, H. Quorum sensing and its relevance to infectious diseases. J. Infect., 2003, 46, 207-214.
[14]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[15]
Uraz, M.; Karakus, S.; Abu Mohsen, U.; Kaplancikli, Z.A.; Rollas, S. The synthesis and evaluation of anti-acetylcholinesterase activity of some 4(3H)-quinazolinone derivatives bearing substituted 1,3,4- thiadiazole. Marmara Pharm. J., 2017, 21, 96-101.
[16]
Truchado, P.; Gil-Izquierdo, A.; Tomas-Barberan, F.; Allende, A. Inhibition by chestnut honey of N-acyl-l-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. J. Agric. Food Chem., 2009, 57, 11186-11193.
[17]
Rashid, M.H.; Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2000, 97, 4885-4890.
[18]
Schrödinger Ligprep, 2017-4; LLC, New York: NY. , 2017.
[19]
Schrödinger Maestro, 2017-4; LLC, New York: NY. , 2017.
[20]
Harder, E.; Damm, W.; Maple, J.; Wu, C.J.; Reboul, M.; Xiang, J.Y.; Wang, L.L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L. Opls3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12, 281-296.
[21]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27, 221-234.
[22]
Schrödinger Protein preparation wizard;epik; impact; prime, 2017-4; LLC, New York: NY. , 2017.
[23]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47, 1739-1749.
[24]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49, 6177-6196.
[25]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47, 1750-1759.
[26]
Schrödinger Qikprop, 2017-4; LLC, New York: NY. , 2017.
[27]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery . Rev., 1997, 23, 3-25.
[28]
Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J.P. Synthesis and cns depressant activity of some novel 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem., 2008, 43, 135-141.
[29]
Desai, N.C.; Bhatt, J.J.; Shah, B.R.; Undavia, N.K.; Trivedi, P.B.; Narayanan, V. Synthesis of substituted quinazolone derivatives as potential anti-hiv agents (part III). Farmaco, 1996, 51, 361-366.
[30]
Alagarsamy, V.; Murugananthan, G.; Venkateshperumal, R. Synthesis, analgesic, anti-inflammatory and antibacterial activities of some novel 2-methyl-3-substituted quinazolin-4(3H)-ones. Biol. Pharm. Bull., 2003, 26, 1711-1714.
[31]
Gürsoy, A.; Karalı, N. Synthesis and primary cytotoxicity evaluation of 3-[[(3-phenyl-4(3H)-quinazolinone-2-yl)mercaptoacetyl] hydrazono]-1H-2-indoli-nones. Eur. J. Med. Chem., 2003, 38, 633-643.
[32]
Weng, L.X.; Yang, Y.X.; Zhang, Y.Q.; Wang, L.H. A new synthetic ligand that activates qscr and blocks antibiotic-tolerant biofilm formation in Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2014, 98, 2565-2572.
[33]
Ding, X.; Yin, B.; Qian, L.; Zeng, Z.R.; Yang, Z.L.; Li, H.X.; Lu, Y.J.; Zhou, S.N. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J. Med. Microbiol., 2011, 60, 1827-1834.
[34]
Rasmussen, T.B.; Givskov, M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol., 2006, 296, 149-161.
[35]
Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.X.; Bonsu, E.; Sintim, H.O. Agents that inhibit bacterial biofilm formation. Future Med. Chem., 2015, 7, 647-671.
[36]
Ulusoy, S.; Şenkardeş, S.; Coşkun, İ.; Boşgelmez-Tınaz, G.; Soulère, L.; Quenau, Y.; Küçükgüzel, Ş.G. Quorum sensing Inhibitor activities of Celecoxib derivatives in Pseudomonas aeruginosa. Lett. Drug Des. Discovery., 2017, 14, 613-618.
[37]
Shrout, J.D.; Chopp, D.L.; Just, C.L.; Hentzer, M.; Givskov, M.; Parsek, M.R. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol., 2006, 62, 1264-1277.
[38]
de la Fuente-Nunez, C.; Korolik, V.; Bains, M.; Nguyen, U.; Breidenstein, E.B.M.; Horsman, S.; Lewenza, S.; Burrows, L.; Hancock, R.E.W. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob. Agents Chemother., 2012, 56, 2696-2704.
[39]
Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280, 295-298.
[40]
Ece, A.; Sevin, F. The discovery of potential cyclin a/cdk2 inhibitors: A combination of 3D-OSAR pharmacophore modeling, virtual screening, and molecular docking studies. Med. Chem. Res., 2013, 22, 5832-5843.
[41]
Mascarenhas, N.M.; Ghoshal, N. An efficient tool for identifying inhibitors based on 3D-OSAR and docking using feature-shape pharmacophore of biologically active conformation - a case study with CDK2/CyclinA. Eur. J. Med. Chem., 2008, 43, 2807-2818.
[42]
Er, M.; Erguven, B.; Tahtaci, H.; Onaran, A.; Karakurt, T.; Ece, A. Synthesis, characterization, preliminary SAR and molecular docking study of some novel substituted imidazo [2,1-b][ 1,3,4] thiadiazole derivatives as antifungal agents. Med. Chem. Res., 2017, 26, 615-630.
[43]
Tahtaci, H.; Karacık, H.; Ece, A.; Er, M.; Şeker, M.G. Design, synthesis, sar and molecular modeling studies of novel imidazo[ 2,1-b][1,3,4]thiadiazole derivatives as highly potent antimicrobial agents. Mol. Inf., 2018, 37
[44]
Yamali, C.; Gul, H.I.; Ece, A.; Taslimi, P.; Gulcin, I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl]benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des., 2018, 91, 857-866.
[45]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45, 2615-2623.