[2]
Waser, R.; and Aono, M. Nanoionics-based resistive switching memories. Nat. Mater., 2007, 6(11), 833-840.
[3]
Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater., 2009, 21(25-26), 2632-2663.
[4]
Fujisaki, Y. Review of emerging new solid-state non-volatile memories. Jpn. J. Appl. Phys., 2013, 52 040001
[5]
Akerman, J. Toward a universal memory. Science, 2005, 308, 508-510.
[6]
Marrows, C.H.; Chapon, L.C.; Langridge, S. Spintronics and functional materials. Mater. Today, 2009, 12(7-8), 70-77.
[7]
Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S.N. Spintronics based random access memory: A review. Mater. Today, 2017, 20, 530-548.
[8]
Chen, A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electron., 2016, 125, 25-38.
[9]
Meena, J.S.; Sze, S.M.; Chand, U.; Tseng, T-Y. Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett., 2014, 9, 526.
[10]
Hamann, H-F.; O’Boyle, M.; Martin, Y-C.; Rooks, M.; Wickramasinghe, H-K. Ultra-high-density phase-change storage and memory. Nat. Mater., 2006, 5, 383-387.
[11]
Wuttig, M.; Yamada, N. Phase change materials for rewriteable data storage. Nat. Mater., 2007, 6, 824-832.
[12]
Bruyere, J.C.; Chakraverty, B.K. Switching and negative resistance in thin films of nickel oxide. Appl. Phys. Lett., 1970, 16(1), 40-43.
[13]
Chua, L-O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory, 1971, 18(5), 507-519.
[14]
Chua, L-O.; Kang, S-M. Memristive devices and systems. Proc. IEEE, 1976, 64, 209-223.
[15]
Yang, J-J.; Strukov, D-B.; Stewart, D-R. Memristive devices for computing. Nat. Nanotechnol., 2013, 8, 13-24.
[16]
Strukov, D-B.; Snider, G-S.; Stuwart, D-R.; Williams, R-S. The missing Memristor found. Nature, 2008, 453, 80-83.
[17]
Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun., 2013, 4, 1771.
[18]
Beaulieu, R.P.; Sulway, D.V.; Cox, C.D. The detection of current filaments in VO2 thin-film switches using the scanning electron microscope. Solid-State Electron., 1973, 3, 428-429.
[19]
Hirose, Y.; Hirose, H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys., 1976, 47, 2767-2772.
[20]
Kozicki, M.N.; Yun, M.; Hilt, L.; Singh, A. Applications of programmable resistance changes in metal-doped chalcogenides. J. Electrochem. Soc., 1999, 146, 298.
[21]
Kund, M.; Beitel, G.; Pinnow, C.U.; Rohr, T.; Schumann, J.; Symanczyk, R.; Ufert, K.; Muller, G. Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm. IEDM Tech. Digest., 2005, 2005, 754-757.
[22]
Yang, J-J.; Pickett, M-D.; Li, X.; Ohlberg, D-A-A.; Stewart, D-R.; Williams, R-S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol., 2008, 3, 429-433.
[23]
Chua, L-O. Resistance switching memories are memristors. Appl. Phys., A., 2011, 102, 765-783.
[24]
Sung, H.J.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 2010, 10, 1297-1301.
[25]
Pickett, M-D.; Medeiros-Ribeiro, G.; Williams, R.S. A scalable neuristor built with Mott memristors. Nat. Mater., 2012, 12, 114-117.
[26]
Chowdari, B.V.R.; Prabaharan, S.R.S.; Yahaya, M.; Talib, I.A. Solid State Ionics: Trends in the New Millenium; World Scientific Publishing: Singapore, 2002.
[27]
Joshua, Y.J.; Miao, F.; Pickett, M.D.; Ohlberg, D.A.; Stewart, D.R.; Lau, C.N.; Williams, R.S. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology, 2009, 20215201
[28]
Strachan, J.P.; Yang, J.J.; Montoro, L.A.; Ospina, C.A.; Ramirez, A.J.; Kilcoyne, A.L.D.; Medeiros-Ribeiro, G.; Williams, R.S. Characterization of electroforming-free titanium dioxide memristors. Beilstein J. Nanotechnol., 2013, 4, 467-473.
[29]
Kwon, D.H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.S.; Park, G.S.; Lee, B.; Han, S.; Kim, M.; Hwang, C.S. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotech., 2010, 5, 148-153.
[30]
Miao, F.; Joshua, Y.J.; Borghetti, J.; Medeiros-Ribeiro, G.; Stanley Williams, R. Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current. Nanotechnology, 2011, 22254007
[31]
Yang, J.J.; Borghetti, J.; Murphy, D.; Stewart, D.R.; Williams, R.S. A Family of electronically reconfigurable nanodevices. Adv. Mater., 2009, 21, 3754-3758.
[32]
Strukov, D.B.; Williams, R.S. Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys., A Mater. Sci. Process., 2009, 94, 515-519.
[33]
Strukov, D.B.; Borghetti, J.L.; Williams, R.S. Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small, 2009, 5, 1058-1063.
[34]
Mazady, A.; Anwar, M. Part I-The underlying physics and conduction mechanism. IEEE Trans. Electron Devices., 2014, 61, 1054-1061.
[35]
Do, Y.H.; Kwak, J.S.; Bae, Y.C.; Jung, K.; Im, H.; Hong, J.P. Hysteretic bipolar resistive switching characteristics in TiO2/TiO2x multilayer homojunctions. Appl. Phys. Lett., 2009, 95093507
[36]
Cao, X.; Li, X.; Yu, W.; Zhang, Y.; Yang, R.; Liu, X.; Kong, J.; Shen, W. Structural characteristics and resistive switching properties of thermally prepared TiO2 thin films. J. Alloy Compd., 2009, 486, 458-461.
[37]
Hirose, S.; Nakayama, A.; Niimi, H.; Kageyama, K.; Takagi, H. Improvement in resistance switching and retention properties of Pt/TiO2 Schottky junction devices. J. Electrochem. Soc., 2011, 1583, 261-266.
[38]
Jeong, H.Y.; Lee, J.Y.; Choi, S.Y. Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films. Appl. Phys. Lett., 2010, 97 042109
[39]
Kannan, V.; Rhee, J.K. A solution processed nonvolatile resistive memory device with Ti/CdSe quantum dot/Ti-TiOx/CdSe quantum dot/indium tin-oxide structure. J. Appl. Phys., 2011, 110 074505
[40]
Cao, X.; Li, X.; Yu, W.; Liu, X.; He, X. Bipolar resistive switching properties of microcrystalline TiO2 thin films deposited by pulsed laser deposition. Mater. Sci. Eng. B, 2009, 157, 36-39.
[41]
Koza, J.A.; Schroen, I.P.; Willmering, M.M.; Switzer, J.A. Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films. Chem. Mater., 2014, 26(15), 4425-4432.
[42]
Barbera, S.L.; Vuillaume, D.; Alibart, F. Filamentary switching: Synaptic plasticity through device volatility. ACS Nano, 2015, 9(1), 941-949.
[43]
Strachan, J.P.; Pickett, M.D.; Yang, J.J.; Aloni, S.; Kilcoyne, A.L.D.; Medeiros-Ribeiro, G.; Williams, R.S. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater., 2010, 22, 3573-3577.
[44]
Liu, D.; Cheng, H.; Zhu, X.; Wang, G.; Wang, N. Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. ACS Appl. Mater. Interfaces, 2013, 5, 11258-11264.
[45]
Yang, Y.; Gao, P.; Gaba, S.; Chang, T.; Pan, X.; Lu, W. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun., 2012, 3, 732.
[46]
Yang, Y.; Gao, P.; Li, L.; Pan, X.; Tappertzhofen, S.; Choi, S.H.; Waser, R.; Valov, I.; Lu, W.D. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun., 2014, 5, 4232.
[47]
Xu, Z.; Bando, Y.; Wang, W.; Bai, X.; Golberg, D. Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano, 2010, 4, 2515-2522.
[48]
Celano, U.; Goux, L.; Belmonte, A.; Opsomer, K.; Franquet, A.; Schulze, A.; Detavernier, C.; Richard, O.; Bender, H.; Jurczak, M.; Vandervorst, W. Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett., 2014, 14, 2401-2406.
[49]
Hubbard, W.A.; Kerelsky, A.; Jasmin, G.; White, E.R.; Lodico, J.; Mecklenburg, M.; Regan, B.C. Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett., 2015, 15, 3983-3987.
[50]
Celano, U.; Goux, L.; Belmonte, A.; Opsomer, K.; Degraeve, R.; Detavernier, C.; Jurczak, M.; Vandervorst, W. Understanding the dual nature of the filament dissolution in conductive bridging devices. J. Phys. Chem. Lett., 2015, 6, 1919-1924.
[51]
Gubicza, A.; Csontos, M.; Halbrittera, A.; Mihály, G. Resistive switching in metallic Ag2S memristors due to a local overheating induced phase transition. Nanoscale, 2015, 7, 11248-11254.
[52]
Gubicza, A.; Csontos, M.; Halbrittera, A.; Mihály, G. Non-exponential resistive switching in Ag2S memristors: A key to nanometer-scale non-volatile memory devices. Nanoscale, 2015, 7, 4394-4399.
[53]
Zhao, X.; Li, M.; Xu, H.; Wang, Z.; Zhang, C.; Liu, W.; Ma, J.; Liu, Y. Forming-free electrochemical metallization resistive memory devices based on nanoporous TiOxNy thin film. J. Alloys Compd., 2016, 656, 612-617.
[54]
Liu, Q.; Long, S.; Lv, H.; Wang, W.; Niu, J.; Huo, Z.; Chen, J.; Liu, M. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano, 2010, 4(10), 6162-6168.
[55]
Devulder, W.; Opsomer, K.; Meersschaut, J.; Deduytsche, D.; Jurczak, M.; Goux, L.; Detavernier, C. Combinatorial study of Ag-Te thin films and their application as cation supply layer in CBRAM Cells. ACS Comb. Sci., 2015, 17, 334-340.
[56]
Devulder, W.; Opsomer, K.; Seidel, F.; Belmonte, A.; Muller, R.; Schutter, B.D.; Hugo, B.; Wilfried, V.; VanElshocht, S.; Jurczak, M.; Goux, L.; Detavernier, C. Influence of carbon alloying on the thermal stability and resistive switching behavior of copper-telluride based CBRAM cells. ACS Appl. Mater. Interfaces, 2013, 5, 6984-6989.
[57]
Liang, X.F.; Chen, Y.; Chen, L.; Yin, J.; Liu, Z.G. Electric switching and memory devices made from RbAg4I5 films. Appl. Phys. Lett., 2007, 90 022508
[58]
Valov, I.; Sapezanskaia, I.; Nayak, A.; Tsuruoka, T.; Bredow, T.; Hasegawa, T.; Staikov, G.; Aono, M.; Waser, R. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater., 2012, 11, 530-535.
[59]
Lee, W.; Park, J.; Son, M.; Lee, J.; Jung, S.; Kim, S.; Park, S.; Shin, J.; Hwang, H. Excellent state stability of Cu/SiC/Pt programmable metallization cells for nonvolatile memory applications. IEEE Electron Device Lett., 2011, 32, 680-682.
[60]
Sakamoto, T.; Sunamura, H.; Kawaura, H. Nanometer-scale switches using copper sulfide. Appl. Phys. Lett., 2003, 82, 3032-3034.
[61]
Lee, M-J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y-B.; Kim, C-J.; Seo, D.H.; Seo, S.; Chung, U-I.; Yoo, I-K.; Kim, K. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater., 2011, 10, 625-630.
[62]
Park, G-S.; Kim, Y.B.; Park, S.Y.; Li, X.S.; Heo, S.; Lee, M-J.; Chang, M.; Kwon, J.H.; Kim, M. Chung, U-In, Dittmann, R.; Waser, R.; Kim, K. In situ observation of filamentary conducting channels in an asymmetric Ta2O5- x/TaO 2-x bilayer structure. Nat. Commun., 2013, 4, 2382.
[63]
Chen, J.Y.; Hsin, C.L.; Huang, C.W.; Chiu, C.H.; Huang, Y.T.; Lin, S.J.; Wu, W.W.; Chen, L.J. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett., 2013, 13, 3671-3677.
[64]
Zhang, S.; Long, S.; Guan, W.; Liu, Q.; Wang, Q.; Liu, M. Resistive switching characteristics of MnOx-based ReRAM. J. Phys. D Appl. Phys., 2009, 42 055112
[65]
Hu, Q.; Park, M.; Abbas, Y.; Kim, J.S.; Yoon, T-S.; Choi, Y.J.; Kang, C.J. Resistive switching properties of manganese oxide nanoparticles with hexagonal shape. Semicond. Sci. Technol., 2015, 30 015017
[66]
Hu, Q.; Shim, J.H.; Abbas, Y.; Song, W.; Yoon, T-S.; Choi, Y.J.; Kang, C.J. Resistive switching characteristics of manganese oxide nanoparticle assembly with crossbar arrays. J. Nanosci. Nanotechnol., 2014, 14, 8182-8186.
[67]
Xu, J.; Yang, Z.; Zhang, Y.; Zhang, X.; Wang, H. Bipolar resistive switching behaviours in ZnMn2O4 film deposited on p+-Si substrate by chemical solution deposition. Bull. Mater. Sci., 2014, 37(7), 1657-1662.
[68]
Abbas, H.; Park, M.R.; Abbas, Y.; Hu, Q.; Kang, T.S.; Yoon, T-S.; Kang, C.J. Resistive switching characteristics of manganese oxide thin film and nanoparticle assembly hybrid devices. Jpn. J. Appl. Phys., 2018, 5706HC03
[69]
Goux, L.; Valov, I. Electrochemical processes and device improvement in conductive bridge RAM cells. Phys. Status Solid A, 2016, 213, 274-288.
[70]
Fu, D.; Xie, D.; Feng, T.; Zhang, C.; Niu, J.; Qian, H.; Liu, L. Unipolar resistive switching properties of diamondlike carbon-based RRAM devices. IEEE Electron Device Lett., 2011, 32, 803-805.
[71]
Raeber, T.J.; Zhao, Z.C.; Murdoch, B.J.; McKenzie, D.R.; McCulloch, D.G.; Partridge, J.G. Resistive switching and transport characteristics of an all-carbon memristor. Carbon, 2018, 136, 280-285.
[72]
Chai, Y.; Wu, Y.; Takei, K.; Chen, H-Y.; Yu, S.; Chan, P.C.H.; Javey, A.; Wong, H-S.P. Nanoscale bipolar and complementary resistive switching memory based on amorphous carbon. IEEE Trans. Electron Devices., 2011, 58, 3933-3939.
[73]
Zhuge, F.; Dai, W.; He, C.L.; Wang, A.Y.; Liu, Y.W.; Li, M.; Wu, Y.H.; Cui, P.; Li, R-W. Nonvolatile resistive switching memory based on amorphous carbon. Appl. Phys. Lett., 2010, 96163505
[74]
Zhao, X.; Xu, H.; Wang, Z.; Zhang, L.; Ma, J.; Liu, Y. Nonvolatile/volatile behaviors and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon, 2015, 91, 38-44.
[75]
Zhang, L.; Xu, H.; Wang, Z.; Zhao, X.; Ma, J.; Liu, Y. Improved resistive switching characteristics by introducing Ag-nanoclusters in amorphous-carbon memory. Mater. Lett., 2015, 154, 98.
[76]
Santini, C.A.; Sebastian, A.; Marchiori, C.; Jonnalagadda, V.P.; Dellmann, L.; Koelmans, W.W.; Rossell, M.D.; Rossel, C.P.; Eleftheriou, E. Oxygenated amorphous carbon for resistive memory applications. Nat. Commun., 2015, 6, 8600.
[77]
Bachmann, T.A.; Koelman, W.W.; Jonnalagadda, V.P.; Gallo, M.L.; Santini, C.A.; Sebastian, A.; Eleftheriou, E.; Craciun, M.F.; Wright, C.D. Memristive effects in oxygenated amorphous carbon nanodevices. Nanotechnology, 2018, 29 035201
[78]
Chen, H.; Zhuge, F.; Fu, B.; Li, J.; Wang, J.; Wang, W.; Wang, Q.; Li, L.; Li, F.; Zhang, H.; Liang, L.; Luo, H.; Wang, M.; Gao, J.; Cao, H.; Zhang, H.; Li, Z. Forming-free resistive switching in a nanoporous nitrogen-doped carbon thin film with ready-made metal nanofilaments. Carbon, 2014, 76, 459-463.
[79]
Sanetra, N.; Karipidou, Z.; Wirtz, R.; Knorr, N.; Rosselli, S.; Nelles, G.; Offenhaeusser, A.; Mayer, D. Adv. Funct. Mater., 2012, 22, 1129.
[80]
Meng, F.; Sana, B.; Li, Y.; Liu, Y.; Lim, S.; Chen, X. Bioengineered tunable memristor based on protein nanocage. Small, 2014, 10, 277-283.
[81]
Talukdar, S.; Mandal, M.; Hutmacher, D.W.; Russell, P.; Soekmadji, C.; Kundu, S.C. Biomaterials, 2011, 32, 2149.
[82]
Bhardwaj, N.; Nguyen, Q.T.; Chen, A.C.; Sah, R.T.; Kundu, S.C. Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials, 2011, 32, 5773.
[83]
Hota, M.K.; Bera, M.K.; Kundu, B.; Kundu, S.C.; Maiti, C.K. A natural silk fibroin protein-based ransparent bio-memristor. Adv. Funct. Mater., 2012, 22, 4493-4499.
[84]
Koo, H-J.; So, J-H.; Dickey, M.D.; Velev, O.D. Towards all-soft matter circuits: Prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater., 2011, 23, 3559-3564.
[85]
Chen, Y.C.; Yu, H-C.; Huang, C-Y.; Chung, W-L.; Wu, S-L.; Su, Y-K. Nonvolatile bio-memristor fabricated with egg albumen flm. Sci. Reports., 2015, 5, 10022.
[86]
Sun, B.; Zhang, X.; Zhou, G.; Li, P.; Zhang, Y.; Wang, H.; Xia, Y.; Zhao, Y. An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Org. Electron., 2017, 42, 181-186.
[87]
Chen, C.; Yang, Y.C.; Zeng, F.; Pan, F. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett., 2010, 97 083502
[88]
Chen, C.; Gao, S.; Tang, G.; Fu, H.; Wang, G.; Song, C.; Zeng, F.; Pan, F. Effect of electrode materials on AlN-based bipolar and complementary resistive switching. ACS Appl. Mater. Interfaces, 2013, 5, 1793-1799.
[89]
Liu, X.; Sadaf, S.M.; Park, S.; Kim, S.; Lee, E.C.; Gun-Young, D.J.; Hwang, H. Complementary resistive switching in niobium oxide-based resistive memory devices. IEEE Electron Device Lett., 2013, 34, 235-237.
[90]
Liu, X.; Sadaf, S.M.; Son, M.; Shin, J.; Park, J.; Lee, J.; Park, S.; Hwang, H. Diode-less bilayer oxide (WOx-NbOx) device for cross-point resistive memory applications. Nanotechnology, 2011, 22475702
[91]
Kim, S.; Choi, S.H.; Lee, J.; Lu, W.D. Tuning resistive switching characteristics of tantalum oxide memristors through si doping. ACS Nano, 2014, 8, 10262-10269.
[92]
Choi, B.J.; Torrezan, A.C.; Norris, K.J.; Miao, F.; Strachan, J.P.; Zhang, M-X.; Ohlberg, D.A.A.; Kobayashi, N.P.; Yang, J.J.; Williams, R.S. Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett., 2013, 13, 3213-3217.
[93]
Choi, B.J.; Chen, A.B.K.; Yang, X.; Chen, I-W. Purely electronic switching with high uniformity, resistance tunability, and good retention in Pt-dispersed SiO2 thin films for ReRAM. Adv. Mater., 2011, 23, 3847-3852.
[94]
Xu, D.L.; Xiong, Y.; Tang, M.H.; Zeng, B.W.; Li, J.Q.; Liu, L.; Li, L.Q.; Yan, S.A.; Tang, Z.H. Bipolar resistive switching behaviors in Cr-doped ZnO films. Microelectron. Eng., 2014, 116, 22-25.
[95]
Xu, H.; Kim, D.H.; Xiahou, Z.; Li, Y.; Zhu, M.; Lee, B.; Liu, C. Effect of Co doping on unipolar resistance switching in Pt/Co:ZnO/Pt structures. J. Alloys Compd., 2016, 658, 806-812.
[96]
Zhang, L.; Xu, H.; Wang, Z.; Yu, H.; Ma, J.; Liu, Y. Coexistence of bipolar and unipolar resistive switching behaviors in the double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device. Appl. Surface. Sci., 2016, 360, 338-341.
[97]
Kuo, C.C.; Chen, I.C.; Shih, C.C.; Chang, K.C.; Huang, C.H.; Chen, P.H.; Chang, T-C.; Tsai, T.M.; Chang, J.S.; Huang, J.C. Galvanic effect of Au-Ag electrodes for conductive bridging resistive switching memory. IEEE Electron Device Lett., 2015, 36, 1321-1324.
[98]
Zhang, H.; Liu, L.; Gao, B.; Qiu, Y.; Liu, X.; Lu, J.; Han, R.; Kang, J.; Yu, B. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Appl. Phys. Lett., 2011, 98 042105
[99]
Mondal, S.; Her, J-L.; Chen, F-H.; Shih, S-J.; Pan, T-M. Improved resistance switching characteristics in Ti-doped Yb2O3 for resistive nonvolatile memory devices. IEEE Electron Device Lett., 2012, 33, 1069-1071.
[100]
Mead, C. Analog VLSI and neural systems; Adison-Wesley: Reading, MA, 1989.
[101]
Yu, S.; Wu, Y.; Jeyasingh, R.; Kuzum, D.; Wong, H-S.P. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices., 2011, 58, 2729-2737.
[102]
Alibart, F.; Pleutin, S.; Bichler, O.; Gamrat, C.; Gotarredona, T.S.; Linares-Barranco, B. Vuillaume, D. A Memristive nanoparticle/organic hybrid synapstor for neuro-inspired computing. Adv. Funct. Mater., 2012, 22, 609-616.
[103]
Graupner, M.; Brunel, N. Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc. Natl. Acad. Sci. USA, 2012, 109, 3991-3996.
[104]
Kim, S.; Du, C.; Sheridan, P.; Ma, W.; Choi, S.H.; Lu, W.D. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett., 2015, 15, 2203-2211.
[105]
Wang, Z.Q.; Xu, H.Y.; Li, X.H.; Yu, H.; Liu, Y.C.; Zhu, X.J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater., 2012, 22, 2759-2765.
[106]
Chang, T.; Jo, S-H.; Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano, 2011, 5, 7669-7676.
[107]
Du, C.; Ma, W.; Chang, T.; Sheridan, P.; Lu, W.D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater., 2015, 25, 4290-4299.
[108]
Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J.K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature. Mater., 2011, 10, 591-595.
[109]
Li, S.; Zeng, F.; Chen, C.; Liu, H.; Tang, G.; Gao, S.; Song, C.; Lin, Y.; Pan, F.; Guob, D. Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C, 2013, 1, 5292-5298.
[110]
Mai, V.H.; Moradpour, A.; Auban Senzier, P.; Pasquier, C.; Wang, K.; Rozenberg, M.J.; Giapintzakis, J.; Mihailescu, C.N.; Orfanidou, C.M.; Svoukis, E.; Breza, A.; Lioutas, C.B.; Franger, S.; Revcolevschi, A.; Maroutian, T.; Lecoeur, P.; Aubert, P.; Agnus, G.; Salot, R.; Albouy, P.A.; Weil, R.; Alamarguy, D.; March, K.; Jomard, F.; Chre’tien, P.; Schneegans, O. Memristive and neuromorphic behavior in a LixCoO2 nanobattery. Sci. Rep., 2015, 5, 7761.
[111]
Moradpour, A.; Schneegans, O.; Franger, S.; Revcolevschi, A.; Salot, R.; Auban-Senzier, P.; Pasquier, C.; Svoukis, E.; Giapintzakis, J.; Dragos, O.; Ciomaga, V-C.; Chrétien, P. Resistive switching phenomena in LixCoO2 thin films. Adv. Mater., 2011, 23, 4141-4145.
[112]
Van de Burgt, Y.; Lubberman, E.; Fuller, E.J.; Keene, S.T.; Faria, G.C.; Agarwal, S.; Marinella, M.J.; Alec Talin, A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater., 2017, 16, 414-418.
[113]
Yang, J.J.; Xia, Q. Battery-like artificial synapses. Nat. Mater., 2017, 16, 396-397.
[114]
Hodgkin, A-L.; Huxley, A-F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117, 500-544.
[115]
Crane, H.D. Neuristor-A novel device and system concept. Proc. IRE, 1962, 50, pp. 2048-2060.
[116]
Chua, L.; Sbitnev, V.; Kim, H. Hodgkin-huxley axon is made of
memristors. Int. J. Bifur. Chaos, 2012, 22, 1230011-1-1230011-48.
[117]
Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw., 2003, 14, 1569-1572.
[118]
Izhikevich, E.M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw., 2004, 15, 1063-1070.
[119]
Tan, Z-H.; Yin, X-B.; Yang, R.; Mi, S-B.; Jia, C-L.; Guo, X. Pavlovian conditioning demonstrated with neuromorphic memristive devices. Sci. Rep., 2017, 7, 713.
[120]
Lim, H.; Kornijcuk, V.; Seek, J.Y.; Kim, S.K.; Kim, I.; Hwang, C.S.; Jeong, D.S. Reliability of neuronal information conveyed by unreliable neuristor based leaky integrate-and-fire neurons: A model study. Sci. Rep., 2015, 5, 9776.
[121]
Pickett, M.D.; Williams, R.S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology, 2012, 23215202
[122]
Pickett, M.D.; Williams, R.S. Phase transitions enable computational universality in neuristor-based cellular automata. Nanotechnology, 2013, 24 384002
[123]
Pickett, M.D. Logic circuits using Neuristors. U.S. Patent
8669785B2 2014
[124]
Pickett, M.D. Neuristor-based reservoir computing devices. U.S.
Patent 2014/0214738 A1 2014
[125]
Muthulakshmi, S.; Dash, C.S.; Prabaharan, S.R.S. Memristor augmented approximate adders and subtractors for image processing applications: An approach. Int. J. Electron. Commun (AEÜ),., 2018, 91, 91-102.
[126]
Hui, S.; Roller, J.; Yick, S.; Hang, Z.; Zhang, X.; Deces-Petit, C.; Xie, Y.; Maric, R.; Ghosh, D. A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J. Power Sources, 2007, 172, 493-502.
[127]
Lee, M.H.; Kim, K.M.; Kim, G.H.; Seek, J.Y.; Song, S.J.; Yoon, J.H.; Seong Hwang, C. Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy. Appl. Phys. Lett., 2010, 96 152909
[128]
Qingjiang, L.; Khiat, A.; Salaoru, I.; Papavassiliou, C.; Hui, X.; Prodromakis, T. Memory impedance in TiO2 based metal-insulator-metal devices. Sci. Rep., 2014, 4, 4522.
[129]
Dash, C.S.; Sahoo, S.; Prabaharan, S.R.S. Resistive switching and impedance characteristics of M/TiO2-x/TiO2/M nano-ionic memristor. Solid State Ionics., 2018, 324, 218.
[130]
You, Y-H.; So, B-S.; Hwang, J-H.; Cho, W.; Lee, S.S.; Chung, T-M.; Kim, C.G.; An, K-S. Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition. Appl. Phys. Lett., 2006, 89 222105
[131]
Kim, C.H.; Jang, Y.H.; Hwang, H.J.; Sun, Z.H.; Moon, H.B.; Cho, J.H. Observation of bistable resistance memory switching in CuO thin films. Appl. Phys. Lett., 2009, 94102107
[132]
Koza, J.A.; Bohannan, E.W.; Switzer, J.A. Superconducting filaments formed during nonvolatile resistance switching in electrodeposited δ-Bi2O3. ACS Nano, 2013, 7, 9940-9946.
[133]
Mehonic, A.; Cueff, S.; Wojdak, M.; Hudziak, S.; Jambois, O.; Labbé, C.; Garrido, B.; Rizk, R.; Kenyon, A.J. Resistive switching in silicon suboxide films. J. Appl. Phys., 2012, 111 074507
[134]
Yu, S.; Philip Wong, H-S. A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett., 2010, 31, 1455-1457.
[135]
Ielmini, D. Modeling the universal set/reset characteristics of bipolar RRAM by Field- and temperature-driven filament growth. IEEE Trans. Electron Devices., 2011, 58, 4309-4317.
[136]
Larentis, S.; Nardi, F.; Balatti, S.; Gilmer, D.C.; Ielmini, D. Resistive switching by voltage-driven ion migration in bipolar RRAM-Part I: Experimental study. IEEE Trans. Electron Devices., 2012, 59, 2461-2467.
[137]
Larentis, S.; Nardi, F.; Balatti, S.; Gilmer, D.C.; Ielmini, D. Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling. IEEE Trans. Electron Devices., 2012, 59, 2468-2475.
[138]
Ambrogio, S.; Balatti, S.; Gilmer, D.C.; Ielmini, D. Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices., 2014, 61, 2378-2386.
[139]
Kim, S.; Choi, S.H.; Lee, J.; Lu, W.D. Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano, 2014, 8, 10262-10269.