[1]
Ahmed, K.; Li, Y.; McClements, D.J.; Xiao, H. Nanoemulsion-and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem., 2012, 132(2), 799-807.
[2]
Alexander, A.; Khichariya, A.; Gupta, S.; Patel, R.J.; Giri, T.K.; Tripathi, D.K. Recent expansions in an emergent novel drug delivery technology: Emulgel. J. Control. Release, 2013, 171(2), 122-132.
[3]
Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. The preparation and evaluation of self-nanoemulsifying systems containing Swietenia oil and an examination of its anti-inflammatory effects. Int. J. Nanomedicine, 2014, 9, 4685-4695.
[4]
Supriya, U.; Seema, C.B.; Preeti, K. Emulgel: A boon for dermatological diseases. Int. J. Pharm. Res. Allied Sci., 2014, 3(4), 1-9.
[5]
Khalid, A.; Rehman, U.; Sethi, A.; Khilji, S.; Fatima, U.; Khan, M.I.; Waqas, M.K.; Saqib, Q.; Farzana, K.; Asad, M. Antimicrobial activity analysis of extracts of Acacia modesta, Artimisia absinthium, Nigella Sativa and Saussurea lappa against Gram positive and Gram negative microorganisms. Afr. J. Biotechnol., 2011, 10(22), 4574-4580.
[6]
Tasawar, Z.; Siraj, Z.; Ahmad, N.; Lashari, M.H. The effects of Nigella Sativa (Kalonji) on lipid profile in patients with stable coronary artery disease in Multan, Pakistan. Pak. J. Nutr., 2011, 10(2), 162-167.
[7]
Harzallah, H.J.; Kouidhi, B.; Flamini, G.; Bakhrouf, A.; Mahjoub, T. Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella Sativa essential oil and thymoquinone. Food Chem., 2011, 129(4), 1469-1474.
[8]
Javed, S.; Shahid, A.A.; Haider, M.S.; Umeera, A.; Ahmad, R.; Mushtaq, S. Nutritional, phytochemical potential and pharmacological evaluation of Nigella Sativa (Kalonji) and Trachyspermum Ammi (Ajwain). J. Med. Plants Res., 2012, 6(5), 768-775.
[9]
Mathur, M.L.; Gaur, J.; Sharma, R.; Haldiya, K.R. Antidiabetic properties of a spice plant Nigella sativa. J. Clin. Endocrinol. Metab., 2011, 1(1), 1-8.
[10]
Forouzanfar, F.; Bazzaz, B.S.F.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects. Iran. J. Basic Med. Sci., 2014, 17(12), 929-938.
[11]
Gholamnezhad, Z.; Keyhanmanesh, R.; Boskabady, M.H. Anti-inflammatory, antioxidant, and immunomodulatory aspects of Nigella Sativa for its preventive and bronchodilatory effects on obstructive respiratory diseases: A review of basic and clinical evidence. J. Funct. Foods, 2015, 17, 910-927.
[12]
Kale, S.; Ghoge, P.; Ansari, A.; Waje, A.; Sonawane, A. Formulation and in-vitro determination of sun protection factor of Nigella Sativa Linn. seed oil sunscreen cream. Int. J. Pharm. Tech. Res., 2010, 2(4), 2194-2197.
[13]
Chaieb, K.; Kouidhi, B.; Jrah, H.; Mahdouani, K.; Bakhrouf, A. Antibacterial activity of Thymoquinone, an active principle of Nigella Sativa and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med., 2011, 11, 29.
[14]
Salem, E.M.; Yar, T.; Bamosa, A.O.; Al-Quorain, A.; Yasawy, M.I.; Alsulaiman, R.M.; Randhawa, M.A. Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia. Saudi J. Gastroenterol., 2010, 16(3), 207-214.
[15]
Islam, M.H.; Ahmad, I.Z.; Salman, M.T. Antibacterial activity of Nigella Sativa seed in various germination phases on clinical bacterial strains isolated from human patients. E3 J. Biotechnol. Pharm. Res., 2013, 4(1), 8-13.
[16]
Jaradat, N.A.; Abualhasan, M. Comparison of phytoconstituents, total phenol contents and free radical scavenging capacities between four Arum species from Jerusalem and Bethlehem. Pharm. Sci., 2016, 22(2), 120-125.
[17]
Yilmaz, E.; Borchert, H.H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema-an in vivo study. Int. J. Pharm., 2006, 307, 232-238.
[18]
More, B.; Sakharwade, S.; Tembhurne, S.; Sakarkar, D. Evaluation for skin irritancy testing of developed formulations containing extract of Butea monosperma for its topical application. Int. J. Toxicol. Appl. Pharmacol., 2013, 3(1), 10-13.
[19]
Mahon, C.R.; Lehman, D.C.; Manuselis, Jr G. Textbook of diagnostic microbiology; Elsevier Health Sciences USA, 2015.
[20]
Neau, S.H.; Chow, M.Y.; Hileman, G.A.; Durrani, M.J.; Gheyas, F.; Evans, B.A. Formulation and process considerations for beads containing Carbopol® 974P, NF resin made by extrusion-spheronization. Int. J. Pharm., 2000, 199(2), 129-140.
[21]
Jain, A.; Gautam, S.P.; Gupta, Y.; Khambete, H.; Jain, S. Development and characterization of ketoconazole emulgel for topical drug delivery. Der. Pharmacia. Sinica, 2010, 1(3), 221-231.
[22]
Singla, V.; Saini, S.; Joshi, B.; Rana, A. Emulgel: A new platform for topical drug delivery. Int. J. Pharma Bio Sci., 2012, 3(1), 485-498.
[23]
Szűts, A.; Láng, P.; Ambrus, R.; Kiss, L.; Deli, M.A.; Szabó-Révész, P. Applicability of sucrose laurate as surfactant in solid dispersions prepared by melt technology. Int. J. Pharm., 2011, 410(1), 107-110.
[24]
Anton, N.; Gayet, P.; Benoit, J.P.; Saulnier, P. Nano-emulsions and nanocapsules by the PIT method: An investigation on the role of the temperature cycling on the emulsion phase inversion. Int. J. Pharm., 2007, 344(1), 44-52.
[25]
Anton, N.; Vandamme, T.F. The universality of low-energy nano-emulsification. Int. J. Pharm., 2009, 377(1), 142-147.
[26]
Rao, J.; McClements, D.J. Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil. Food Hydrocoll., 2011, 25(6), 1413-1423.
[27]
Rao, J.; McClements, D.J. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. J. Agric. Food Chem., 2010, 58(11), 7059-7066.
[28]
Leong, W.F.; Man, Y.B.C.; Lai, O.M.; Long, K.; Nakajima, M.; Tan, C.P. Effect of sucrose fatty acid esters on the particle characteristics and flow properties of phytosterol nanodispersions. J. Food Eng., 2011, 104(1), 63-69.
[29]
Robinson, V.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Final report of the amended safety assessment of sodium laureth sulfate and related salts of sulfated ethoxylated alcohols. Int. J. Toxicol., 2010, 29(4)(Suppl.), 151S-161S.
[30]
Yilmaz, E.; Borchert, H-H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema-an in vivo study. Int. J. Pharm., 2006, 307(2), 232-238.
[31]
Chakraborty, S.; Khandai, M.; Sharma, A.; Khanam, N.; Patra, C.; Dinda, S.; Sen, K. Preparation, in vitro and in vivo evaluation of algino-pectinate bioadhesive microspheres: An investigation of the effects of polymers using multiple comparison analysis. Acta Pharm., 2010, 60(3), 255-266.
[32]
Prasanth, V.; Chakraborty, A.; Mathew, S.T.; Mathappan, R.; Kamalakkannan, V. Formulation and evaluation of Salbutamol sulphate microspheres by solvent evaporation method. J. Appl. Pharm. Sci., 2011, 1, 133-137.
[33]
Jeong, M-W.; Oh, S-G.; Kim, Y.C. Effects of amine and amine oxide compounds on the zeta-potential of emulsion droplets stabilized by phosphatidylcholine. Colloids Surf. A Physicochem. Eng. Asp., 2001, 181(1), 247-253.
[34]
Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. Preparation, characterization and anti-inflammatory activity of Swietenia macrophylla nanoemulgel. J. Nanomed. Nanotechnol., 2014, 5, 190.
[35]
Marslin, G.; Selvakesavan, R.K.; Franklin, G.; Sarmento, B.; Dias, A.C. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int. J. Nanomedicine, 2015, 10, 5955-5963.
[36]
Lkhagvajav, N.; Yasa, I.; Celik, E.; Koizhaiganova, M.; Sari, O. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig. J. Nanomater. Biostruct., 2011, 6(1), 149-154.
[37]
Mokarizadeh, M.; Kafil, H.S.; Ghanbarzadeh, S.; Alizadeh, A.; Hamishehkar, H. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: A potential application in food stuffs as a natural preservative. Res. Pharm. Sci., 2017, 12(5), 409-415.
[38]
Assali, M.; Zaid, A.N.; Abdallah, F.; Almasri, M.; Khayyat, R. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: Strategy to improve ciprofloxacin antibacterial activity. Int. J. Nanomedicine, 2017, 12, 6647-6659.