[1]
Spiteller, G. Furan fatty acids: Occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids, 2005, 40, 755-771.
[2]
Fraga, B.M.; Terrero, D. Alkene-γ-lactones and avocado furans from Persea indica: A revision of the structure of majorenolide and related lactones. Phytochemistry, 1996, 41, 229-232.
[3]
Crabtree, R.H. The Organometallic chemistry of the transition Metals, 3rd ed; Wiley & Sons: New York, 2001.
[4]
Crews, C.; Castle, L. A review of occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci. Technol., 2007, 18, 365-372.
[5]
(a) Tong, X.; Ma, Y.; Li, Y. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A, 2010, 385, 1-13.
(b) Gandini, A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: A review of recent progress. Polym. Chem., 2010, 1, 245-251.
(c) Moreau, C.; Belgacem, M.N.; Gandini, A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal., 2004, 27, 11-30.
(d) Gidron, O.; Dadvand, A.; Sheynin, Y.; Bendikov, M.; Perepichka, D.F. Towards “Green” electronic materials. α-Oligofurans as semiconductors. Chem. Commun., 2011, 47, 1976-1978.
[6]
De Paulis, T. Vilazodone- A combined SSRI and 5-HT1A partial agonist for the treatment of depression. Invest. Drug. J., 2007, 10(3), 193-201.
[7]
Munro, T.A.; Duncan, K.K.; Xu, W.; Wang, Y.; Liu-Chen, L.Y.; Carlezon, W.A.; Cohen, B.M.; Béguin, C. Standard protecting groups create potent and selective κ opioids: Salvinorin B alkoxymethyl ethers. Bioorg. Med. Chem., 2008, 16(3), 1279-1286.
[8]
France, C.P. Winger. G.; Medzihradsky, F.; Seggel, M.R.; Rice, K.C.; Woods, J.H. Mirfentanil: Pharmacological profile of a novel fentanyl derivative with opioid and nonopioid effects. J. Pharmacol. Exp. Ther., 1991, 258(2), 502-510.
[9]
Hellerbach, J.; Schnider, O.; Besendorf, H.; Pellmont, B.
Synthetic analgesics; Part IIA. Morphinans. Pergamon Press: New York. , 1966.
[10]
Krause, T.; Gerbershagen, M.U.; Fiege, M.; Weisshorn, R.; Wappler, F. Dantrolene. A review of its pharmacology, therapeutic use and new developments. Anaesthesia, 2004, 59(4), 364-373.
[11]
Shen, H. Illustrated pharmacology memory cards; Phar Mnemonics. Minireview, 2008.
[12]
Negwer, M.; Scharnow, H.G. Organic-chemical drugs and their synonyms, 8th ed; Wiley-VCH: Weinheim, 2001.
[13]
Donaldson, S.C.; Straley, B.A.; Hegde, N.V.; Sawant, A.A. De-bRoy, C.; Jayarao, B.M. Molecular epidemiology of ceftiofur-resistant Escherichia coli isolates from dairy calves. Appl. Environ. Microbiol., 2006, 72(6), 3940-3948.
[14]
Pichichero, M.E. Cephalosporins can be prescribed safely for penicillin-allergic patients. J. Fam. Pract., 2006, 55(2), 106-112.
[15]
Furstner, A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: A survey of the last 2500 years. Angew. Chem. Int. Ed., 2003, 42, 3582-3603.
[16]
Stricker, B.H.; Blok, A.P.; Claas, F.H.; Van Parys, G.E.; Desmet, V.J. Hepatic injury associated with the use of nitrofurans: A clinicopathological study of 52 reported cases. Hepatology, 1988, 8(3), 599-606.
[17]
Tripathy, K.D. Essentials of medical pharmacology, 6th Ed.; Jaypee
Brothers Medical Publishers (P) Limited, New Delhi. 2009.
[18]
Lednicer, D.; Mitscher, L.A.; Georg, G.I.
The organic chemistry of drug synthesis; 4: 5, A Wiley-Interscience Publication, Wiley &
Sons: New York. , 1990.
[19]
Parham, H.; Aibaghi Esfahani, B. Determination of furazolidone in urine by square-wave voltammetric method. J. Iran. Chem. Soc., 2008, 5(3), 453-457.
[20]
Hall, C. Dictionary of organic compounds, 6th ed; Chapman Hall: London, 1996.
[21]
Bruni, F.M.; De Luca, G.; Venturoli, V.; Boner, A.L. Intranasal corticosteroids and adrenal suppression. Neuroimmunomodulation, 2009, 16(5), 353-362.
[22]
Tan, R.A.; Corren, J. Mometasone furoate in the management of asthma: A review. Ther. Clin. Risk Manag., 2008, 4(6), 1201-1208.
[23]
Palasciano, G.; Maggi, V.; Portincasa, P. The effect of the H2-antagonist niperotidine on intragastric acidity in healthy subjects undergoing 24-hour pH-monitoring. Ital. J. Gastroenterol., 1990, 22(5), 291-294.
[24]
Rossi, S. Australian medicines handbook, 5th ed; Australian Medicines Handbook Ptv Ltd.: Adelaide, 2004.
[25]
Abdulmalik, O.; Safo, M.K.; Chen, Q.; Yang, J.; Brugnara, C.; Ohene-Frempong, K.; Abraham, D.J.; Asakura, T. 5-Hydroxy-methyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br. J. Haematol., 2005, 128(4), 552-561.
[26]
Burris, H.A. Dual kinase inhibition in the treatment of breast cancer: Initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist, 2004, 9(3), 10-15.
[27]
Lin, T.; Lin, X.; Lu, C.; Hu, Z.; Huang, W.; Huang, Y.; Shen, Y. Secondary metabolites of Phomopsis sp. XZ-26, an endophytic fungus from Camptothecaacuminate. Eur. J. Org. Chem., 2009, 2009(18), 2975-2982.
[28]
Eicher, T.; Hauptmann, S. The chemistry of heterocycles, 2nd ed; Wiley-VCH: Weinheim, 2003.
[29]
Lipshutz, B.H. Five-membered heteroaromatic rings as intermediates in organic synthesis. Chem. Rev., 1986, 86, 795-820.
[30]
Blanc, A.; Bénéteau, V.; Weibel, J.M.; Pale, P. Silver & gold-catalyzed routes to furans and benzofurans. Org. Biomol. Chem., 2016, 14, 9184-9205.
[31]
Gabriele, B.; Plastina, P.; Vetere, M.V.; Veltri, L.; Mancuso, L.; Salerno, G. A simple and convenient synthesis of substituted furans and pyrroles by CuCl2-catalyzed heterocyclodehydration of 3-yne-1,2-diols and N-Boc- or N-tosyl-1-amino-3-yn-2-ols. Tetrahedron Lett., 2010, 51, 3565-3567.
[32]
Minkler, S.R.K.; Isley, N.A.; Lippincott, D.J.; Krause, N.; Lipshutz, B.H. Leveraging the micellar effect: Gold-catalyzed dehydrative cyclizations in water at room temperature. Org. Lett., 2014, 16(3), 724-726.
[33]
Lempke, L.; Ernst, A.; Kahl, F.; Weberskirch, R.; Krause, N. Sustainable micellar gold catalysis. Poly(2-oxazolines) as versatile amphiphiles. Adv. Synth. Catal., 2016, 358, 1491-1499.
[34]
Rajesh, M.; Puri, S.; Kant, R.; Reddy, M.S. Synthesis of substituted furan/pyrrole-3-carboxamides through a tandem nucleopalladation and isocyanate insertion. Org. Lett., 2016, 18(17), 4332-4335.
[35]
Guieu, B.; Roch, M.L.; David, M.; Gouault, N. Gold-catalyzed synthesis of enantioenriched furfurylamines from amino acids. Tetrahedron Asymmetry, 2015, 26, 868-875.
[36]
Gabriele, B.; Mancuso, R.; Maltese, V.; Veltri, L.; Salerno, G. Synthesis of furan-3-carboxylic and 4-methylene-4,5-dihydrofu-ran-3-carboxylic esters by direct palladium iodide catalyzed oxidative carbonylation of 3-yne-1,2-diol derivatives. J. Org. Chem., 2012, 77(19), 8657-8668.
[37]
Miao, M.; Xu, X.; Xu, L.; Ren, H. Copper(I) iodide mediated iodocyclization of cyclopropylideneallenyl ketones: Facile and effective synthesis of highly substituted furan derivatives. Eur. J. Org. Chem., 2014, 2014(27), 5896-5900.
[38]
Wang, C.; Li, Z.; Ju, Y.; Koo, S. Mechanism and scope of the Mn(III)-initiated oxidation of β-ketocarbonyl compounds: Furan synthesis. Eur. J. Org. Chem., 2012, 2012(35), 6976-6985.
[39]
Chen, P.; Meng, Y.; Yang, Q.; Wu, J.; Xiao, Y.; Gorja, D.R.; Song, C.; Chang, J. Selective synthesis of 2,5-disubstituted furan-3- carboxylates and the isomeric 2,4-disubstituted furan-3-carboxylates. RSC Advances, 2015, 5, 79906-79914.
[40]
Klaus, V.; Clark, J.S. Thioether-catalyzed tandem synthesis of furans and cyclic ethers or lactones. Synlett, 2017, 28(11), 1358-1362.
[41]
Xu, C.; Wittmann, S.; Gemander, M.; Ruohonen, V.; Clark, J.S. Trialkylphosphine-mediated synthesis of 2-acyl furans from ynenones. Org. Lett., 2017, 19, 3556-3559.
[42]
Golonka, A.N.; Schindler, C.S. Iron(III) chloride-catalyzed synthesis of 3-carboxy-2,5-disubstituted furans from γ -alkynyl aryl- and alkylketones. Tetrahedron, 2017, 73, 4109-4114.
[43]
Liu, J.M.; Liu, X.Y.; Qing, X.S.; Wang, T.; Wang, C.D.I. 2/K2CO3-promoted ring-opening/cyclization/rearrangement/ aromatization sequence: A powerful strategy for the synthesis of polysubstituted furans. Chin. Chem. Lett., 2016, 28(2), 458-462.
[44]
Irudayanathan, F.M.; Raja, G.C.E.; Lee, S. Copper-catalyzed direct synthesis of furans and thiophenes via decarboxylative coupling of alkynyl carboxylic acids with H2O or Na2S. Tetrahedron, 2015, 71(26), 4418-4425.
[45]
Undeela, S.; Ramchandra, J.P.; Menon, R.S. A sequential synthesis of substituted furans from aryl alkynes and ketones involving a Cerium(IV) Ammonium Nitrate (CAN)-mediated oxidative cyclization. Tetrahedron Lett., 2014, 55, 5667-5670.
[46]
Luo, J.; Lu, D.; Peng, Y.; Tang, Q. Paal-Knorr furan synthesis using titanium tetrachloride as dehydrating agent: A concise furan synthesis from α- haloketones and β-dicarbonyl compounds. Asian J. Org. Chem., 2017, 6, 1546-1550.
[47]
Wang, G.; Guan, Z.; Tang, R.; He, Y. Ionic liquid as catalyst and reaction medium: A simple and efficient procedure for Paal-Knorr furan synthesis. Synth. Commun., 2010, 40, 370-377.
[48]
Chen, L.; Fang, Y.; Zhao, Q.; Shi, M.; Li, C. Synthesis of multisubstituted furans via copper-catalyzed intramolecular O-vinylation of ketones with vinyl bromides. Tetrahedron Lett., 2010, 51, 3678-3681.
[49]
Ferrand, L.; Das Nerves, N.; Malacria, M.; Mouriès-Mansuy, V.; Ollivier, C.; Fensterbank, L. Synthesis of multisubstituted furans via copper-catalyzed intramolecular O-vinylation of ketones with vinyl bromides. Tetrahedron Lett., 2010, 51, 3678-3681.
[50]
Shiroodi, R.K.; Koleda, O.; Gevorgyan, V. 1,2-Boryl migration empowers regiodivergent synthesis of borylated furans. J. Am. Chem. Soc., 2014, 136, 13146-13149.
[51]
Wang, T.; Shi, S.; Vilhelmsen, M.H.; Zhang, T.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Chemoselectivity control: Gold(I)-catalyzed synthesis of 6,7- dihydrobenzofuran-4(5H)-ones and benzofurans from 1-(alkynyl)-7-oxabicyclo[4.1.0]heptan-2-ones. Chem. Eur. J, 2013, 19, 12512-12516.
[52]
Hoffmann, M.; Miaskiewicz, S.; Weibel, J.M.; Pale, P.; Blanc, A. Gold(I)-catalyzed formation of furans from γ-acyloxyalkynyl ketones. Beilstein J. Org. Chem., 2013, 9, 1774-1780.
[53]
Shiroodi, R.K.; Vera, C.I.R.; Dudnik, A.S.; Gevorgyan, V. Synthesis of furans and pyrroles via migratory and double migratory cycloisomerization reactions of homopropargylic aldehydes and imines. Tetrahedron Lett., 2015, 56(23), 3251-3254.
[55]
Wang, T.; Shi, S.; Hansmann, M.M.; Rettenmeier, E.; Rudolph, M.; Hashmi, A.S.K. Synthesis of highly substituted 3-formylfurans by a gold(I)-catalyzed oxidation/1,2-alkynyl migration/cyclization cascade. Angew. Chem. Int. Ed., 2014, 53, 3715-3719.
[56]
Wang, T.; Huang, L.; Shi, S.; Rudolph, M.; Hashmi, A.S.K. Synthesis of highly substituted N-(furan-3- ylmethylene) benzenesulfonamides by a gold(I)-catalyzed oxidation/1,2-alkynyl migration/cyclization cascade. Chem. Eur. J, 2014, 20, 14868-14871.
[57]
Pennell, M.N.; Foster, R.W.; Turner, P.G.; Hailes, H.C.; Tameb, C.J.; Sheppard, T.D. Gold catalysed synthesis of 3-alkoxyfurans at room temperature. Chem. Commun., 2014, 50, 1302-1304.
[58]
Vidal, C.; Merza, L.; Álvarez, J.G. Deep eutectic solvents: Biorenewable reaction media for Au(I)-catalysed cycloisomerisations and one-pot tandem cycloisomerisation/Diels-Alder reactions. Green Chem., 2015, 17, 3870-3878.
[59]
Palisse, A.; Kirsch, S.F. Synthesis of furans through silver-catalyzed propargyl-Claisen rearrangement followed by cyclocondensation. Eur. J. Org. Chem., 2014, 2014(32), 7095-7098.
[60]
Morcillo, S.P.; Leboeuf, D.; Bour, C.; Gandon, V. Calcium-catalyzed synthesis of polysubstituted 2-alkenylfurans from β-keto esters tethered to propargyl alcohols. Chem. Eur. J, 2016, 22, 16974-16978.
[61]
Lee, R.J.; Lindley, M.R.; Pritchard, G.J.; Kimber, M.C. A biosynthetically inspired route to substituted furans using the Appel reaction: Total synthesis of the furan fatty acid F5. Chem. Commun., 2017, 53, 6327-6330.
[62]
Zhang, W.B.; Xiu, S.D.; Li, C.Y. Rhodium-catalyzed synthesis of multisubstituted furans from N-sulfonyl-1,2,3- triazoles bearing tethered carbonyl group. Org. Chem. Front., 2015, 2, 47-50.
[63]
Zhang, B.; Wang, T.; Zhang, Z. Gold-catalyzed synthesis of 1-(furan-3-yl)-1,2-diones. J. Org. Chem., 2017, 82, 11644-11654.
[64]
Gao, W.C.; Hu, F.; Tian, J.; Li, X.; Wei, W.L.; Chang, H.H. Hypoiodite-catalysed oxidative cyclisation of Michael adducts of chalcones with 1,3-dicarbonyl compounds: A facile and versatile approach to substituted furans and cyclopropanes. Chem. Commun., 2016, 52, 13097-13100.
[65]
Xue, C.; Huang, X.; Wu, S.; Fu, C.; Ma, S. Controlled TfOH- or AuCl-catalyzed cycloisomerization and tandem hydrolytic defluorination of 1,2-allenyl perfluoroalkyl ketones. Org. Chem. Front., 2016, 3, 588-597.
[66]
Reddy, C.R.; Krishna, G.; Reddy, M.D. Synthesis of substituted 3- furanoates from MBH-acetates of acetylenic aldehydes via tandem isomerization-deacetylation cycloisomerization: Access to Elliott’s alcohol. Org. Biomol. Chem., 2014, 12, 1664-1670.
[68]
Chen, Z.W.; Luo, M.T.; Ye, D.N.; Zhou, Z.G.; Ye, M.; Liu, L.X. Silver-catalyzed highly regioselective synthesis of α-carbonyl furans from eneones. Synth. Commun., 2014, 44, 1825-1831.
[69]
Cao, H.; Zhan, H.; Cen, J.; Lin, J.; Lin, Y.; Zhu, Q.; Fu, M.; Jiang, H. Copper-catalyzed C-O bond formation: An efficient one-pot highly regioselective synthesis of furans from (2-furyl)carbene complexes. Org. Lett., 2013, 15(5), 1080-1083.
[70]
Manna, S.; Antonchick, A.P. Copper(I)-catalyzed radical addition of acetophenones to alkynes in furan synthesis. Org. Lett., 2015, 17(17), 4300-4303.
[71]
Iqbal, A.; Sahraoui, E.; Leeper, F.J. Gold(I)-catalysed synthesis of a furan analogue of thiamine pyrophosphate. Beilstein J. Org. Chem., 2014, 10, 2580-2585.
[72]
Hosseyni, S.; Su, Y.; Shi, X. Gold catalyzed synthesis of substituted furan by intermolecular cascade reaction of propargyl alcohol and alkyne. Org. Lett., 2015, 17(24), 6010-6013.
[73]
Jiang, H.; Yao, W.; Cao, H.; Huang, H.; Cao, D. Iron-catalyzed domino process for the synthesis of α-carbonyl furan derivatives via one-pot cyclization reaction. J. Org. Chem., 2010, 75, 5347-5350.
[74]
Cao, H.; Jiang, H.F.; Huang, H.V.; Zhao, J.W. Pd-catalyzed cyclization reaction: A convenient domino process for synthesis of α-carbonyl furan derivatives. Org. Biomol. Chem., 2011, 9, 7313-7317.
[75]
Gujarathi, S.; Zheng, G. AgSbF6-catalyzed efficient propargylation/cycloisomerization tandem reaction for the synthesis of fully substituted furans and new insights into the reaction mechanism. Tetrahedron, 2015, 71, 6183-6188.
[76]
Chatterjee, P.N.; Roy, S. Alkylation of 1,3-dicarbonyl compounds with benzylic and propargylic alcohols using Ir-Sn bimetallic catalyst: Synthesis of fully decorated furans and pyrroles. Tetrahedron, 2011, 67, 4569-4577.
[77]
Ghosh, M.; Mishra, S.; Monir, K.; Hajra, A. Copper-catalyzed regioselective synthesis of furan via tandem cycloaddition of ketone with an unsaturated carboxylic acid under air. Org. Biomol. Chem., 2015, 13, 309-314.
[78]
Ghosh, M.; Mishra, S.; Hajra, A. Regioselective synthesis of multisubstituted furans via copper- mediated coupling between ketones and β-nitrostyrenes. J. Org. Chem., 2015, 80(10), 5364-5368.
[79]
Dey, A.; Ali, M.A.; Jana, S.; Hajra, A. Copper-catalyzed regioselective synthesis of multisubstituted furans by coupling between ketones and aromatic olefins. J. Org. Chem., 2017, 82, 4812-4818.
[80]
Palmieri, A.; Gabrielli, S.; Ballini, R. Efficient two-step sequence for the synthesis of 2,5-disubstituted furan derivatives from functionalized nitroalkanes: Successive Amberlyst A21- and Amberlyst 15-catalyzed processes. Chem. Commun., 2010, 46, 6165-6167.
[81]
Ren, Z.L.; Sun, M.; Guan, Z.R.; Ding, M.W. New efficient synthesis of 1,2,4-trisubstituted furans by a sequential Passerini/Wittig/isomerization reaction starting from Baylis-Hillman β-bromo aldehydes. Synlett, 2018, 29(01), 106-110.
[82]
Shaibakova, M.G.; Khafizova, L.O.; Chobanov, N.M.; Gubaidullin, R.R.; Popod’ko, N.R.; Dzhemilev, U.M. The effifient one-pot synthesis of tetraalkyl substituted furans from symmetrical acetylene, EtAlCl2, and carboxylic esters catalyzed by Cp2TiCl2. Tetrahedron Lett., 2014, 55, 1326-1328.
[83]
Chobanov, N.M.; Shaibakova, M.G.; Popod’ko, N.R.; Khafizova, L.O.; Dzhemilev, U.M. Ti-catalyzed reactions of EtAlCl2: An efficient catalytic method for the synthesis of tetrasubstituted furans. Tetrahedron, 2017, 73, 639-5645.
[84]
Chen, R.; Fan, X.; Xu, Z.; He, Z. Facile synthesis of polysubstituted furans and dihydrofurans via cyclization of bromonitromethane with oxodienes. Tetrahedron Lett., 2017, 58, 3722-3726.
[85]
Wang, S.; Liu, C.; Zha, C.; Jia, J.; Xie, M.; Zhang, N. Synthesis of sulfonyl-substituted furans via copper-mediated annulation of acetylenic sulfones and activated methylenes. Tetrahedron, 2016, 72(42), 6684-6691.
[86]
Silwal, S.; Rahaim, R.J. Modular synthesis of tetrasubstituted furans from alkynes, Weinreb amides, and aldehydes. Tetrahedron Lett., 2015, 56, 5738-5742.
[87]
Guo, P. Gold-catalyzed formation of C–O and C–C bonds: An efficient domino reaction synthesis of functionalized furans. Catal. Commun., 2015, 68, 58-60.
[88]
Cui, X.; Xu, X.; Wojtas, L.; Kim, M.M.; Zhang, X.P. Regioselective synthesis of multisubstituted furans via metalloradical cyclization of alkynes with α-diazocarbonyls: Construction of functionalized α-oligofurans. J. Am. Chem. Soc., 2012, 134, 19981-19984.
[89]
Hossain, M.L.; Ye, F.; Zhang, Y. Wang. J. Cu(I)-catalyzed reaction of diazo compounds with terminal alkynes: A direct synthesis of trisubstituted furans. Tetrahedron, 2014, 70, 6957-6962.
[90]
Yang, Y.; Ni, F.; Shu, W.M.; Wu, A.X. Water as an additive for selective synthesis of saturated 1,4-diketones and tetrasubstituted furans directly from 1,4-enediones. Tetrahedron, 2014, 70, 6733-6741.
[91]
Lin, M.H.; Kuo, C.K.; Huang, Y.C.; Tsai, Y.T.; Tsai, C.H.; Liang, K.Y.; Li, Y.S.; Chuang, T.H. Indium-mediated allenylation of arylacyl bromides in a route for the synthesis of substituted furans. Tetrahedron, 2014, 70, 5513-5518.
[92]
Zeng, W.; Wu, W.; Jiang, H.; Sun, Y.; Chen, Z. Highly efficient synthesis of 2,3,4-trisubstituted furans via silver-catalyzed sequential nucleophilic addition and cyclization reactions of haloalkynes. Tetrahedron Lett., 2013, 54, 4605-4609.
[93]
Moss, T.A.; Nowak, T. Synthesis of 2,3-dicarbonylated pyrroles and furans via the three-component Hantzsch reaction. Tetrahedron Lett., 2012, 53, 3056-3060.
[94]
York, M. A continuous-flow synthesis of annulated and polysubstituted furans from the reaction of ketones and α-haloketones. Tetrahedron Lett., 2011, 52, 6267-6270.
[95]
Wang, T.; Liu, J.; Lv, Z.; Zhong, H.; Chen, H.; Niu, C.; Li, K. Efficient and mild synthesis of highly substituted 2,5-dihydrofuran and furan derivatives via stepwise reaction. Tetrahedron, 2011, 67, 3476-3482.
[96]
Sasikala, K.A.; Kalesh, K.A.; Anabha, E.R.; Pillai, P.M.; Asokan, C.V.; Devaky, K.S. Synthesis of 2,3,5-trisubstituted furans from α-formylaroylketene dithioacetals. Tetrahedron Lett., 2011, 52, 1667-1669.
[97]
Yazici, A.; Pyne, S.G. Synthesis of 3-halo-2,5-disubstituted furans via CuX mediated cyclization–halogenation reactions. Tetrahedron Lett., 2011, 52, 1398-1400.
[98]
Sydnes, L.K.; Isanov, R.; Sengee, M.; Livi, F. Regiospecific synthesis of tetrasubstituted furans. Synth. Commun., 2013, 43, 2898-2905.
[99]
Lee, H.; Yi, Y.; Jun, C.H. Copper(II)-promoted one-pot conversion of 1-alkynes with anhydrides or primary amines to the respective 2,5-disubstituted furans or pyrroles under microwave irradiation conditions. Adv. Synth. Catal., 2015, 357, 3485-3490.
[100]
Huang, W.; Liu, C.; Gu, Y. Auto-tandem catalysis-induced synthesis of trisubstituted furans through domino Acid-acid-catalyzed reaction of aliphatic aldehydes and 1,3-dicarbonyl compounds by using N-bromosuccinimide as oxidant. Adv. Synth. Catal., 2017, 359, 1811-1818.
[101]
Roslan, I.I. Sun. J.; Chuah. G.K.; Jaenicke. S. Cobalt(II)-catalyzed electrophilic alkynylation of 1,3-dicarbonyl compounds to form polysubstituted furans via п-п activation. Adv. Synth. Catal., 2015, 357, 719-726.
[102]
Li, J.; Rudolph, M.; Rominger, F.; Xie, J.; Hashmi, A.S.K. A gold-catalyzed A3 coupling/cyclization/elimination sequence as versatile tool for the synthesis of furfuryl alcohol derivatives from glyceraldehyde and alkynes. Adv. Synth. Catal., 2016, 358, 207-211.
[103]
Li, J.; Liu, L.; Ding, D.; Sun, J.; Ji, Y.; Dong, J. Gold(III)-catalyzed Three-Component Coupling reaction (TCC) selective toward furans. Org. Lett., 2013, 15(11), 2884-2887.
[105]
Pagar, V.V.; Liu, R.S. Gold-catalyzed α-furanylations of quinoline N-oxides with alkenyldiazo carbonyl species. Org. Biomol. Chem., 2015, 13, 6166-6169.
[106]
Kramer, S.; Skrydstrup, T. Gold-catalyzed carbene transfer to alkynes: Access to 2,4- disubstituted furans. Angew. Chem. Int. Ed., 2012, 51, 4681-4684.
[107]
Ma, Y.; Zhang, S.; Yang, S.; Song, F.; You, J. Gold-catalyzed C(sp3)-H/C(sp)-H coupling/cyclization/oxidative alkynylation sequence: A powerful strategy for the synthesis of 3-alkynyl polysubstituted furans. Angew. Chem. Int. Ed., 2014, 53, 7870-7874.
[108]
Cheng, X.; Yu, Y.; Mao, Z.; Chen, J.; Huang, X. Facile synthesis of substituted 3‐aminofurans through tandem reaction of N‐sulfonyl‐1,2,3‐triazoles with propargyl alcohols. Org. Biomol. Chem., 2016, 14, 3878-3882.
[109]
Li, E.; Yao, W.; Xie, X.; Wang, C.; Shao, Y.; Li, Y. Gold-catalyzed efficient synthesis of 2,4-disubstituted furans from aryloxyenynes. Org. Biomol. Chem., 2012, 10, 2960-2965.
[111]
He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. Silver-mediated oxidative C−H/C−H functionalization: A strategy to construct polysubstituted furans. J. Am. Chem. Soc., 2012, 134, 5766-5769.
[112]
Lou, J.; Wang, Q.; Wu, K.; Wu, P.; Yu, Z. Iron-catalyzed oxidative C−H functionalization of internal olefins for the synthesis of tetrasubstituted furans. Org. Lett., 2017, 19, 3287-3290.
[113]
Mondal, K.; Pan, S.C. Synthesis of 2,5-disubstituted furans from Sc(OTf)3 catalyzed reaction of aryl oxiranediesters with γ-hydroxyenones. J. Org. Chem., 2017, 82, 4415-4421.
[114]
Nandi, G.C.; Soumini, K. Catalyst-controlled straightforward synthesis of highly substituted pyrroles/furan via propargylation/ cycloisomerization of α-oxoketene-N,S-acetals. J. Org. Chem., 2016, 81, 11909-11915.
[115]
Xia, Y.; Ge, R.; Chen, L.; Liu, Z.; Xiao, Q.; Zhang, Y.; Wang, J. Palladium-catalyzed oxidative cross-coupling of conjugated enynones with organoboronic acids. J. Org. Chem., 2015, 80(16), 7856-7864.
[116]
Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.; Wang, J. Cu(I)-catalyzed synthesis of furan-substituted allenes using conjugated ene-yne-ketones as carbene precursors. J. Org. Chem., 2016, 81(8), 3275-3285.
[117]
Trofimov, B.A.; Bidusenko, I.A.; Schmidt, E.Y.; Ushakov, I.A.; Vashchenko, A.V. Acetylene as a driving and organizing molecule in one-pot transition metal-free synthesis of furans using chalcones and their analogues. Asian J. Org. Chem., 2017, 6(6), 707-711.
[118]
Chang, S.; Desai, S.; Leznoff, D.B.; Merbouh, N.; Britton, R. A short, gram-scale synthesis of 2,5-disubstituted furans. Eur. J. Org. Chem., 2013, 2013(16), 3219-3222.
[120]
Huang, Q.; Zheng, H.; Liu, S.; Kong, L.; Luo, F.; Zhu, G. Direct access to 2-amino-5-azidomethylfurans through palladiumcatalyzed azidative cycloisomerization of homoallenyl amides. Org. Biomol. Chem., 2016, 14, 8557-8563.
[121]
Wan, Y.; Zhang, J.; Chen, Y.; Kong, L.; Luo, F.; Zhu, G. Palladium-catalyzed tandem cyclization/sulfonylation of homoallenyl amides with sodium sulfinates. Org. Biomol. Chem., 2017, 15, 7204-7211.
[122]
Zhang, J.; Wu, M.; Lu, W.; Wang, S.; Zhang, Y.; Cheng, C.; Zhu, G. Preparation of 2-amino-5-homoallylfurans via palladium-cata-lyzed tandem cycloisomerization/heck-type coupling of homoalle-nyl amides with allyltrialkylsilanes. J. Org. Chem., 2017, 82, 11134-11140.
[123]
Miao, M.; Xu, H.; Luo, Y.; Jin, M.; Chen, Z.; Xu, J.; Ren, H. A modular approach to highly functionalized 3-sulfonylfurans via conjugate addition of 3-cyclopropylideneprop-2-en-1-ones with sodium sulfinates and sequential 5-endo-trig iodocyclization. Org. Chem. Front., 2017, 4, 1824-1828.
[124]
Yang, X.; Yan, R. A method for accessing sulfanylfurans from homopropargylic alcohols and sulfonyl hydrazides. Org. Biomol. Chem., 2017, 15, 3571-3574.
[125]
Bakshi, D.; Singh, A. Direct Csp2–H enolization: An allenoate alkylation cascade toward the assembly of multisubstituted furans. Org. Biomol. Chem., 2017, 15, 3175-3178.
[126]
Vijayaprasad, P.; Venkanna, A.; Shanker, M.; Kishan, E.; Rao, P.V. Triflic acid promoted solvent free synthesis of densely functionalized furans. RSC Advances, 2017, 7, 10524-10528.
[127]
Yu, Y.; Chen, Y.; Wu, W.; Jiang, H. Facile synthesis of cyanofurans via Michael-addition/cyclization of ene-yne-ketones with trimethylsilyl cyanide. Chem. Commun., 2017, 53, 640-643.
[128]
An, Z.; She, Y.; Yang, X.; Pang, X.; Yan, R. Metal-free synthesis 3-methylthiofurans from homopropargylic alcohols and DMSO via tandem sulfenylation/cyclization reaction in one-pot manner. Org. Chem. Front., 2016, 3, 1746-1749.
[129]
Zhou, W.; Yuea, Z.; Zhang, J. A highly efficient one-pot trifluoromethylation/cyclization reaction of electron-deficient 1,3-conju-gated enynes: Modular access to trifluoromethylated furans and 2,3-dihydrofurans. Org. Chem. Front., 2016, 3, 1416-1419.
[130]
Wu, J.; Wang, D.; Wan, Y.; Ma, C. Rhodium‐catalyzed tunable oxidative cyclization toward the selective synthesis of α‐pyrones and furans. Chem. Commun., 2016, 52, 1661-1664.
[131]
Mane, V.; Kumar, T.; Pradhan, S.; Katiyar, S.; Namboothiri, I.N.N. One-pot regioselective synthesis of functionalized and fused furans from Morita-Baylis-Hillman and Rauhut-Currier adducts of nitroalkenes. RSC Advances, 2015, 5, 69990-69999.
[132]
Yang, X.; Hu, F.; Di, H.; Cheng, X.; Li, D.; Kan, X.; Zoua, X.; Zhang, Q. A convenient base-mediated synthesis of 3-aryol- 4-methyl (or benzyl)-2-methylthio furans from α-oxo ketene dithioacetals and propargyl alcohols via domino coupling/annulations. Org. Biomol. Chem., 2014, 12, 8947-8951.
[133]
González, J.; López, L.A.; Vicente, R. Zinc-catalyzed synthesis of 2-alkenylfurans via cross-coupling of enynones and diazo compounds. Chem. Commun., 2014, 50, 8536-8538.
[134]
Huynh, T.N.T.; Retailleau, P.; Denhez, C.; Nguyen, K.P.P. Guillaume. D. Regioselective synthesis of 3,4,5- trisubstituted 2-aminofurans. Org. Biomol. Chem., 2014, 12, 5098-5101.
[135]
Li, J.S.; Cai, F.F.; Li, Z.W.; Liu, W.D.; Simpson, J.; Xue, Y.; Pang, H.L.; Huang, P.M.; Cao, Z.; Lia, D.L. One-step metal-free construction of fluorescent 5-aryl-2,3-dicyanofurans from simple aryl ketones with DDQ. RSC Advances, 2014, 4, 474-478.
[136]
Cao, H.; Jiang, H.F.; Zhou, X.S.; Qi, C.R.; Lin, Y.G.; Wua, J.Y.; Liang, Q.M. CuO/CNTs-catalyzed heterogeneous process: A convenient strategy to prepare furan derivatives from electron-deficient alkynes and α-hydroxy ketones. Green Chem., 2012, 14, 2710-2714.
[137]
Hamal, K.B.; Chalifoux, W.A. One-pot synthesis of α-carbonyl bicyclic furans via a sequential Diels−Alder/5-exo-dig cyclization/ oxidation reaction. J. Org. Chem., 2017, 82, 12920-12927.
[138]
Zhang, T.; Maekawa, H. Synthesis of 4-(trifluoromethyl) cyclopentenones and 2-(trifluoromethyl)furans by reductive trifluoroacetylation of ynones. Org. Lett., 2017, 19(24), 6602-6605.