摘要
背景:在过去的几十年中,治疗肿瘤疾病的可能性正在极大地增长。不幸的是,这些事态发展导致了对新疗法的抵抗。如果我们面对酪氨酸激酶抑制剂(TKIs)的治疗领域,那就尤其如此。这篇综述从成功的例子(例如CML)中获得了线索,概述了在治疗肿瘤性疾病期间可能发生的TKI耐药性以及可以采用的可用策略。 方法:我们使用不同的数据库(例如PubMed和Scopus)并利用不同的关键字和不同的逻辑运算符,对经过同行评审的文章进行了文献检索。 结果:收录68篇论文。 24篇论文概述了广泛的肿瘤领域中TKIs耐药性的原因。其余的论文涉及CML,深入分析了这种病理学中存在的TKI抵抗力以及克服它们的策略。 结论:本综述的目的是为TKIs耐药性的治疗方法和克服方法提供概述和方法学指导。
关键词: 癌症,TKI,慢性粒细胞白血病,耐药性,Bcr-Abl,伊马替尼,激酶,腹水。
[1]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[2]
Bononi, A.; Agnoletto, C.; De Marchi, E.; Marchi, S.; Patergnani, S.; Bonora, M.; Giorgi, C.; Missiroli, S.; Poletti, F.; Rimessi, A.; Pinton, P. Protein kinases and phosphatases in the control of cell fate. Enzyme Res., 2011.2011329098
[http://dx.doi.org/10.4061/2011/329098] [PMID: 21904669]
[http://dx.doi.org/10.4061/2011/329098] [PMID: 21904669]
[3]
Cross, T.G.; Scheel-Toellner, D.; Henriquez, N.V.; Deacon, E.; Salmon, M.; Lord, J.M. Serine/threonine protein kinases and apoptosis. Exp. Cell Res., 2000, 256(1), 34-41.
[http://dx.doi.org/10.1006/excr.2000.4836] [PMID: 10739649]
[http://dx.doi.org/10.1006/excr.2000.4836] [PMID: 10739649]
[4]
Knight, Z.A.; Lin, H.; Shokat, K.M. Targeting the cancer kinome through polypharmacology. Nat. Rev. Cancer, 2010, 10(2), 130-137.
[http://dx.doi.org/10.1038/nrc2787] [PMID: 20094047]
[http://dx.doi.org/10.1038/nrc2787] [PMID: 20094047]
[5]
Gross, S.; Rahal, R.; Stransky, N.; Lengauer, C.; Hoeflich, K.P. Targeting cancer with kinase inhibitors. J. Clin. Invest., 2015, 125(5), 1780-1789.
[http://dx.doi.org/10.1172/JCI76094] [PMID: 25932675]
[http://dx.doi.org/10.1172/JCI76094] [PMID: 25932675]
[6]
Shi, Y. Serine/threonine phosphatases: mechanism through structure. Cell, 2009, 139(3), 468-484.
[http://dx.doi.org/10.1016/j.cell.2009.10.006] [PMID: 19879837]
[http://dx.doi.org/10.1016/j.cell.2009.10.006] [PMID: 19879837]
[7]
Malhotra, V.; Perry, M.C. Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol. Ther., 2003, 2(4), 2-4.
[PMID: 14508075]
[PMID: 14508075]
[8]
Padma, V.V. An overview of targeted cancer therapy. Biomedicine (Taipei), 2015, 5(4), 19.
[http://dx.doi.org/10.7603/s40681-015-0019-4] [PMID: 26613930]
[http://dx.doi.org/10.7603/s40681-015-0019-4] [PMID: 26613930]
[10]
Fabbro, D.; Cowan-Jacob, S.W.; Moebitz, H. Ten things you should know about protein kinases: IUPHAR Review 14. Br. J. Pharmacol., 2015, 172(11), 2675-2700.
[http://dx.doi.org/10.1111/bph.13096] [PMID: 25630872]
[http://dx.doi.org/10.1111/bph.13096] [PMID: 25630872]
[11]
Camidge, D.R.; Pao, W.; Sequist, L.V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol., 2014, 11(8), 473-481.
[http://dx.doi.org/10.1038/nrclinonc.2014.104] [PMID: 24981256]
[http://dx.doi.org/10.1038/nrclinonc.2014.104] [PMID: 24981256]
[12]
Bixby, D.; Talpaz, M. Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance. Hematology (Am. Soc. Hematol. Educ. Program), 2009, 461-476.
[http://dx.doi.org/10.1182/asheducation-2009.1.461] [PMID: 20008232]
[http://dx.doi.org/10.1182/asheducation-2009.1.461] [PMID: 20008232]
[13]
Rexer, B.N.; Engelman, J.A.; Arteaga, C.L. Overcoming resistance to tyrosine kinase inhibitors: lessons learned from cancer cells treated with EGFR antagonists. Cell Cycle, 2009, 8(1), 18-22.
[http://dx.doi.org/10.4161/cc.8.1.7324] [PMID: 19106609]
[http://dx.doi.org/10.4161/cc.8.1.7324] [PMID: 19106609]
[14]
Chen, Y.; Fu, L. Mechanisms of acquired resistance to tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2011, 1(4), 197-207.
[http://dx.doi.org/10.1016/j.apsb.2011.10.007]
[http://dx.doi.org/10.1016/j.apsb.2011.10.007]
[15]
Rosenzweig, S.A. Acquired resistance to drugs targeting receptor tyrosine kinases. Biochem. Pharmacol., 2012, 83(8), 1041-1048.
[http://dx.doi.org/10.1016/j.bcp.2011.12.025] [PMID: 22227013]
[http://dx.doi.org/10.1016/j.bcp.2011.12.025] [PMID: 22227013]
[16]
Eide, C.A.; O’Hare, T. Chronic myeloid leukemia: advances in understanding disease biology and mechanisms of resistance to tyrosine kinase inhibitors. Curr. Hematol. Malig. Rep., 2015, 10(2), 158-166.
[http://dx.doi.org/10.1007/s11899-015-0248-3] [PMID: 25700679]
[http://dx.doi.org/10.1007/s11899-015-0248-3] [PMID: 25700679]
[17]
Than, H.; Chuah, C.; Ong, S.T. Molecular mechanism of TKI resistance and potential approaches to overcome resistance; Molecular Pathogenesis and Treatment of Chronic Myelogenous Leukemia, 2016, pp. 167-182.
[http://dx.doi.org/10.1007/978-4-431-55714-2_11]
[http://dx.doi.org/10.1007/978-4-431-55714-2_11]
[18]
Nakada, M.; Kita, D.; Watanabe, T.; Hayashi, Y.; Hamada, J. Mechanism of chemoresistance against tyrosine kinase inhibitors in malignant glioma. Brain Tumor Pathol., 2014, 31(3), 198-207.
[http://dx.doi.org/10.1007/s10014-013-0174-9] [PMID: 24399202]
[http://dx.doi.org/10.1007/s10014-013-0174-9] [PMID: 24399202]
[19]
Gainor, J.F.; Shaw, A.T. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J. Clin. Oncol., 2013, 31(31), 3987-3996.
[http://dx.doi.org/10.1200/JCO.2012.45.2029] [PMID: 24101047]
[http://dx.doi.org/10.1200/JCO.2012.45.2029] [PMID: 24101047]
[20]
Ahsan, A. Lung Cancer and Personalized Medicine, 2016, 893, 137-153.
[http://dx.doi.org/10.1007/978-3-319-24223-1_7]
[http://dx.doi.org/10.1007/978-3-319-24223-1_7]
[21]
Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2015, 5(5), 390-401.
[http://dx.doi.org/10.1016/j.apsb.2015.07.001] [PMID: 26579470]
[http://dx.doi.org/10.1016/j.apsb.2015.07.001] [PMID: 26579470]
[22]
Tabarestani, S.; Movafagh, A. New developments in chronic myeloid leukemia: implications for therapy. Iran. J. Cancer Prev., 2016, 9(1)e3961
[http://dx.doi.org/10.17795/ijcp-3961] [PMID: 27366312]
[http://dx.doi.org/10.17795/ijcp-3961] [PMID: 27366312]
[23]
Holyoake, T.L.; Vetrie, D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood, 2017, 129(12), 1595-1606.
[http://dx.doi.org/ 10.1182/blood-2016-09-696013] [PMID: 28159740]
[http://dx.doi.org/ 10.1182/blood-2016-09-696013] [PMID: 28159740]
[24]
Neviani, P.; Harb, J.G.; Oaks, J.J.; Santhanam, R.; Walker, C.J.; Ellis, J.J.; Ferenchak, G.; Dorrance, A.M.; Paisie, C.A.; Eiring, A.M.; Ma, Y.; Mao, H.C.; Zhang, B.; Wunderlich, M.; May, P.C.; Sun, C.; Saddoughi, S.A.; Bielawski, J.; Blum, W.; Klisovic, R.B.; Solt, J.A.; Byrd, J.C.; Volinia, S.; Cortes, J.; Huettner, C.S.; Koschmieder, S.; Holyoake, T.L.; Devine, S.; Caligiuri, M.A.; Croce, C.M.; Garzon, R.; Ogretmen, B.; Arlinghaus, R.B.; Chen, C.S.; Bittman, R.; Hokland, P.; Roy, D.C.; Milojkovic, D.; Apperley, J.; Goldman, J.M.; Reid, A.; Mulloy, J.C.; Bhatia, R.; Marcucci, G.; Perrotti, D. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J. Clin. Invest., 2013, 123(10), 4144-4157.
[http://dx.doi.org/10.1172/JCI68951] [PMID: 23999433]
[http://dx.doi.org/10.1172/JCI68951] [PMID: 23999433]
[25]
American Cancer Society. Available at: https://www.cancer.org/cancer/chronic-myeloid-leukemia/about/what-is-cml.html(Accessed date: 5 January,. 2018.
[26]
An, X.; Tiwari, A.K.; Sun, Y.; Ding, P.R.; Ashby, C.R., Jr; Chen, Z.S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk. Res., 2010, 34(10), 1255-1268.
[http://dx.doi.org/10.1016/j.leukres.2010.04.016] [PMID: 20537386]
[http://dx.doi.org/10.1016/j.leukres.2010.04.016] [PMID: 20537386]
[27]
Deininger, M.W.N.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96(10), 3343-3556.
[PMID: 11071626]
[PMID: 11071626]
[28]
Lambert, G.K.; Duhme-Klair, A.K.; Morgan, T.; Ramjee, M.K. The background, discovery and clinical development of BCR-ABL inhibitors. Drug Discov. Today, 2013, 18(19-20), 992-1000.
[http://dx.doi.org/10.1016/j.drudis.2013.06.001] [PMID: 23769978]
[http://dx.doi.org/10.1016/j.drudis.2013.06.001] [PMID: 23769978]
[29]
Panjarian, S.; Iacob, R.E.; Chen, S.; Engen, J.R.; Smithgall, T.E. Structure and dynamic regulation of Abl kinases. J. Biol. Chem., 2013, 288(8), 5443-5450.
[http://dx.doi.org/10.1074/jbc.R112.438382] [PMID: 23316053]
[http://dx.doi.org/10.1074/jbc.R112.438382] [PMID: 23316053]
[30]
Zhao, X.; Ghaffari, S.; Lodish, H.; Malashkevich, V.N.; Kim, P.S. Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat. Struct. Biol., 2002, 9(2), 117-120.
[http://dx.doi.org/ 10.1038/nsb747] [PMID: 11780146]
[http://dx.doi.org/ 10.1038/nsb747] [PMID: 11780146]
[31]
Colicelli, J. ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci. Signal., 2010, 3(139), re6.
[http://dx.doi.org/10.1126/scisignal.3139re6] [PMID: 20841568]
[http://dx.doi.org/10.1126/scisignal.3139re6] [PMID: 20841568]
[32]
Kantarjian, H.M.; Talpaz, M.; Giles, F.; O’Brien, S.; Cortes, J. New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann. Intern. Med., 2006, 145(12), 913-923.
[http://dx.doi.org/10.7326/0003-4819-145-12-200612190-00008] [PMID: 17179059]
[http://dx.doi.org/10.7326/0003-4819-145-12-200612190-00008] [PMID: 17179059]
[33]
Hantschel, O.; Superti-Furga, G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat. Rev. Mol. Cell Biol., 2004, 5(1), 33-44.
[http://dx.doi.org/10.1038/nrm1280] [PMID: 14708008]
[http://dx.doi.org/10.1038/nrm1280] [PMID: 14708008]
[34]
Fallacara, A.L.; Tintori, C.; Radi, M.; Schenone, S.; Botta, M. Insight into the allosteric inhibition of Abl kinase. J. Chem. Inf. Model., 2014, 54(5), 1325-1338.
[http://dx.doi.org/10.1021/ci500060k] [PMID: 24787133]
[http://dx.doi.org/10.1021/ci500060k] [PMID: 24787133]
[35]
Lamontanara, A.J.; Gencer, E.B.; Kuzyk, O.; Hantschel, O. Mechanisms of resistance to BCR-ABL and other kinase inhibitors. Biochim. Biophys. Acta, 2013, 1834(7), 1449-1459.
[http://dx.doi.org/10.1016/j.bbapap.2012.12.009] [PMID: 23277196]
[http://dx.doi.org/10.1016/j.bbapap.2012.12.009] [PMID: 23277196]
[36]
Miller, G.D.; Bruno, B.J.; Lim, C.S. Resistant mutations in CML and Ph + ALL – role of ponatinib. Biologics, 2014, 8, 243-254.
[http://dx.doi.org/10.2147/BTT.S50734] [PMID: 25349473]
[http://dx.doi.org/10.2147/BTT.S50734] [PMID: 25349473]
[37]
Asaki, T.; Sugiyama, Y.; Hamamoto, T.; Higashioka, M.
Umehara, M.; Naito, H.; Niwa, T. Design and synthesis of 3-substituted benzamide derivatives as Bcr-Abl kinase in-hibitors. Bioorg. Med. Chem. Lett., 2006, 16(5), 1421-1425.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.042] [PMID: 16332440]
Umehara, M.; Naito, H.; Niwa, T. Design and synthesis of 3-substituted benzamide derivatives as Bcr-Abl kinase in-hibitors. Bioorg. Med. Chem. Lett., 2006, 16(5), 1421-1425.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.042] [PMID: 16332440]
[38]
Cowan-Jacob, S.W.; Fendrich, G.; Floersheimer, A.; Furet, P.; Liebetanz, J.; Rummel, G.; Rheinberger, P.; Centeleghe, M.; Fabbro, D.; Manley, P.W. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(Pt 1), 80-93.
[http://dx.doi.org/10.1107/S0907444906047287] [PMID: 17164530]
[http://dx.doi.org/10.1107/S0907444906047287] [PMID: 17164530]
[39]
Manley, P.W.; Stiefl, N.; Cowan-Jacob, S.W.; Kaufman, S.; Mestan, J.; Wartmann, M.; Wiesmann, M.; Woodman, R.; Gallagher, N. Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Bioorg. Med. Chem., 2010, 18(19), 6977-6986.
[http://dx.doi.org/10.1016/j.bmc.2010.08.026] [PMID: 20817538]
[http://dx.doi.org/10.1016/j.bmc.2010.08.026] [PMID: 20817538]
[40]
Manley, P.W.; Cowan-Jacob, S.W.; Buchdunger, E.; Fabbro, D.; Fendrich, G.; Furet, P.; Meyer, T.; Zimmermann, J. Imatinib: a selective tyrosine kinase inhibitor. Eur. J. Cancer, 2002, 38(Suppl. 5), S19-S27.
[http://dx.doi.org/10.1016/S0959-8049(02)80599-8] [PMID: 12528769]
[http://dx.doi.org/10.1016/S0959-8049(02)80599-8] [PMID: 12528769]
[42]
Hantschel, O. Allosteric BCR-ABL inhibitors in Philadelphia chromosome-positive acute lymphoblastic leukemia: novel opportunities for drug combinations to overcome resistance. Haematologica, 2012, 97(2), 157-159.
[http://dx.doi.org/10.3324/haematol.2012.061812] [PMID: 22298820]
[http://dx.doi.org/10.3324/haematol.2012.061812] [PMID: 22298820]
[43]
Olivieri, A.; Manzione, L. Dasatinib: a new step in molecular target therapy. Ann. Oncol., 2007, 18(Suppl. 6), vi42-vi46.
[http://dx.doi.org/10.1093/annonc/mdm223] [PMID: 17591830]
[http://dx.doi.org/10.1093/annonc/mdm223] [PMID: 17591830]
[44]
Lucas, C.M.; Harris, R.J.; Holcroft, A.K.; Scott, L.J.; Carmell, N.; McDonald, E.; Polydoros, F.; Clark, R.E. Second generation tyrosine kinase inhibitors prevent disease progression in high-risk (high CIP2A) chronic myeloid leukaemia patients. Leukemia, 2015, 29(7), 1514-1523.
[http://dx.doi.org/10.1038/leu.2015.71] [PMID: 25765543]
[http://dx.doi.org/10.1038/leu.2015.71] [PMID: 25765543]
[45]
Jabbour, E.; Kantarjian, H.; Cortes, J. Use of second- and third-generation tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: an evolving treatment paradigm. Clin. Lymphoma Myeloma Leuk., 2015, 15(6), 323-334.
[http://dx.doi.org/10.1016/j.clml.2015.03.006] [PMID: 25971713]
[http://dx.doi.org/10.1016/j.clml.2015.03.006] [PMID: 25971713]
[46]
Zhou, T.; Commodore, L.; Huang, W.S.; Wang, Y.; Thomas, M.; Keats, J.; Xu, Q.; Rivera, V.M.; Shakespeare, W.C.; Clackson, T.; Dalgarno, D.C.; Zhu, X. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance. Chem. Biol. Drug Des., 2011, 77(1), 1-11.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01054.x] [PMID: 21118377]
[http://dx.doi.org/10.1111/j.1747-0285.2010.01054.x] [PMID: 21118377]
[47]
Nicolini, F.E.; Basak, G.W.; Kim, D.W.; Olavarria, E.; Pinilla-Ibarz, J.; Apperley, J.F.; Hughes, T.; Niederwieser, D.; Mauro, M.J.; Chuah, C.; Hochhaus, A.; Martinelli, G.; DerSarkissian, M.; Duh, M.S.; McGarry, L.J.; Kantarjian, H.M.; Cortes, J.E. Overall survival with ponatinib versus allogeneic stem cell transplantation in Philadelphia chromosome-positive leukemias with the T315I mutation. Cancer, 2017, 123(15), 2875-2880.
[http://dx.doi.org/10.1002/cncr.30558] [PMID: 28387926]
[http://dx.doi.org/10.1002/cncr.30558] [PMID: 28387926]
[48]
Levinson, N.M.; Boxer, S.G. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. PLoS One, 2012, 7(4)e29828
[http://dx.doi.org/10.1371/journal.pone.0029828] [PMID: 22493660]
[http://dx.doi.org/10.1371/journal.pone.0029828] [PMID: 22493660]
[49]
Weisberg, E.; Manley, P.W.; Breitenstein, W.; Brüggen, J.; Cowan-Jacob, S.W.; Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.; Hall-Meyers, E.; Kung, A.L.; Mestan, J.; Daley, G.Q.; Callahan, L.; Catley, L.; Cavazza, C.; Azam, M.; Neuberg, D.; Wright, R.D.; Gilliland, D.G.; Griffin, J.D. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7(2), 129-141.
[http://dx.doi.org/10.1016/j.ccr.2005.01.007] [PMID: 15710326]
[http://dx.doi.org/10.1016/j.ccr.2005.01.007] [PMID: 15710326]
[50]
Manley, P.W.; Stiefl, N.J. Progress in the Discovery of BCR-ABL Kinase Inhibitors for the Treatment of Leukemia. In: Cancer II. Topics in Medicinal Chemistry; Waring, M.J. (eds), , Ed.; Springer: Cham, 2017; Vol. 28, pp. 1-37.
[http://dx.doi.org/10.1007/7355_2017_5]
[http://dx.doi.org/10.1007/7355_2017_5]
[51]
Das, J.; Chen, P.; Norris, D.; Padmanabha, R.; Lin, J.; Moquin, R.V.; Shen, Z.; Cook, L.S.; Doweyko, A.M.; Pitt, S.; Pang, S.; Shen, D.R.; Fang, Q.; de Fex, H.F.; McIntyre, K.W.; Shuster, D.J.; Gillooly, K.M.; Behnia, K.; Schieven, G.L.; Wityak, J.; Barrish, J.C. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J. Med. Chem., 2006, 49(23), 6819-6832.
[http://dx.doi.org/10.1021/jm060727j] [PMID: 17154512]
[http://dx.doi.org/10.1021/jm060727j] [PMID: 17154512]
[52]
Tokarski, J.S.; Newitt, J.A.; Chang, C.Y.J.; Cheng, J.D.; Wittekind, M.; Kiefer, S.E.; Kish, K.; Lee, F.Y.F.; Borzillerri, R.; Lombardo, L.J.; Xie, D.; Zhang, Y.; Klei, H.E. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res., 2006, 66(11), 5790-5797.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4187] [PMID: 16740718]
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4187] [PMID: 16740718]
[53]
Lindauer, M.; Hochhaus, A. Dasatinib. In: Small molecules in oncology. recent results in cancer research; Martens U. (eds), Springer, Berlin, Heidelberg,. , 2014; Vol. 201, pp. 27-65.
[http://dx.doi.org/10.1007/978-3-642-54490-3_2]
[http://dx.doi.org/10.1007/978-3-642-54490-3_2]
[54]
Blay, J.Y.; von Mehren, M. Nilotinib: a novel, selective tyrosine kinase inhibitor. Semin. Oncol., 2011, 38(1)(Suppl. 1), S3-S9.
[http://dx.doi.org/10.1053/j.seminoncol.2011.01.016] [PMID: 21419934]
[http://dx.doi.org/10.1053/j.seminoncol.2011.01.016] [PMID: 21419934]
[55]
Jabbour, E.; Cortes, J.; Kantarjian, H. Nilotinib for the treatment of chronic myeloid leukemia: An evidence-based review. Core Evid., 2010, 4, 207-213.
[PMID: 20694077]
[PMID: 20694077]
[56]
Kantarjian, H.M.; Hochhaus, A.; Saglio, G.; De Souza, C.; Flinn, I.W.; Stenke, L.; Goh, Y.T.; Rosti, G.; Nakamae, H.; Gallagher, N.J.; Hoenekopp, A.; Blakesley, R.E.; Larson, R.A.; Hughes, T.P. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol., 2011, 12(9), 841-851.
[http://dx.doi.org/10.1016/S1470-2045(11)70201-7] [PMID: 21856226]
[http://dx.doi.org/10.1016/S1470-2045(11)70201-7] [PMID: 21856226]
[57]
Shukla, S.; Kouanda, A.; Silverton, L.; Talele, T.T.; Ambudkar, S.V. Pharmacophore modeling of nilotinib as an inhibitor of ATP-binding cassette drug transporters and BCR-ABL kinase using a three-dimensional quantitative structure-activity relationship approach. Mol. Pharm., 2014, 11(7), 2313-2322.
[http://dx.doi.org/10.1021/mp400762h] [PMID: 24865254]
[http://dx.doi.org/10.1021/mp400762h] [PMID: 24865254]
[58]
Martinelli, G.; Iacobucci, I.; Soverini, S.; Palandri, F.; Castagnetti, F.; Rosti, G.; Baccarani, M. Nilotinib: a novel encouraging therapeutic option for chronic myeloid leukemia patients with imatinib resistance or intolerance. Biologics, 2007, 1(2), 121-127.
[PMID: 19707322]
[PMID: 19707322]
[59]
Huang, W.S.; Metcalf, C.A.; Sundaramoorthi, R.; Wang, Y.; Zou, D.; Thomas, R.M.; Zhu, X.; Cai, L.; Wen, D.; Liu, S.; Romero, J.; Qi, J.; Chen, I.; Banda, G.; Lentini, S.P.; Das, S.; Xu, Q.; Keats, J.; Wang, F.; Wardwell, S.; Ning, Y.; Snodgrass, J.T.; Broudy, M.I.; Russian, K.; Zhou, T.; Commodore, L.; Narasimhan, N.I.; Mohemmad, Q.K.; Iuliucci, J.; Rivera, V.M.; Dalgarno, D.C.; Sawyer, T.K.; Clackson, T.; Shakespeare, W.C. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenylbenzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J. Med. Chem., 2010, 53(12), 4701-4719.
[http://dx.doi.org/10.1021/jm100395q] [PMID: 20513156]
[http://dx.doi.org/10.1021/jm100395q] [PMID: 20513156]
[60]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A., III; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.N.; Druker, B.J.; Clackson, T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
[61]
Nagar, B.; Hantschel, O.; Young, M.A.; Scheffzek, K.; Veach, D.; Bornmann, W.; Clarkson, B.; Superti-Furga, G.; Kuriyan, J. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell, 2003, 112(6), 859-871.
[http://dx.doi.org/10.1016/S0092-8674(03)00194-6] [PMID: 12654251]
[http://dx.doi.org/10.1016/S0092-8674(03)00194-6] [PMID: 12654251]
[62]
Gray, N.S.; Fabbro, D. Discovery of Allosteric Bcr – Abl
Inhibitors from Phenotypic Screen to Clinical Candidate.,
(1st ed. ) , 2014; Vol. 548, .
[http://dx.doi.org/10.1016/B978-0-12-397918-6.00007-0]
[http://dx.doi.org/10.1016/B978-0-12-397918-6.00007-0]
[63]
Zhang, J.; Adrián, F.J.; Jahnke, W.; Cowan-Jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Powers, J.; Dierks, C.; Sun, F.; Guo, G.R.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature, 2010, 463(7280), 501-506.
[http://dx.doi.org/10.1038/nature08675] [PMID: 20072125]
[http://dx.doi.org/10.1038/nature08675] [PMID: 20072125]
[64]
Hantschel, O. Structure, regulation, signaling, and targeting of abl kinases in cancer. Genes Cancer, 2012, 3(5-6), 436-446.
[http://dx.doi.org/10.1177/1947601912458584] [PMID: 23226581]
[http://dx.doi.org/10.1177/1947601912458584] [PMID: 23226581]
[65]
Khateb, M.; Ruimi, N.; Khamisie, H.; Najajreh, Y.; Mian, A.; Metodieva, A.; Ruthardt, M.; Mahajna, J. Overcoming Bcr-Abl T315I mutation by combination of GNF-2 and ATP competitors in an Abl-independent mechanism. BMC Cancer, 2012, 12(1), 563.
[http://dx.doi.org/10.1186/1471-2407-12-563] [PMID: 23186157]
[http://dx.doi.org/10.1186/1471-2407-12-563] [PMID: 23186157]
[66]
Wylie, A.A.; Schoepfer, J.; Jahnke, W.; Cowan-Jacob, S.W.; Loo, A.; Furet, P.; Marzinzik, A.L.; Pelle, X.; Donovan, J.; Zhu, W.; Buonamici, S.; Hassan, A.Q.; Lombardo, F.; Iyer, V.; Palmer, M.; Berellini, G.; Dodd, S.; Thohan, S.; Bitter, H.; Branford, S.; Ross, D.M.; Hughes, T.P.; Petruzzelli, L.; Vanasse, K.G.; Warmuth, M.; Hofmann, F.; Keen, N.J.; Sellers, W.R. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature, 2017, 543(7647), 733-737.
[http://dx.doi.org/10.1038/nature21702] [PMID: 28329763]
[http://dx.doi.org/10.1038/nature21702] [PMID: 28329763]
[67]
Agarwal, A.; MacKenzie, R.J.; Pippa, R.; Eide, C.A.; Oddo, J.; Tyner, J.W.; Sears, R.; Vitek, M.P.; Odero, M.D.; Christensen, D.J.; Druker, B.J. Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia. Clin. Cancer Res., 2014, 20(8), 2092-2103.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2575] [PMID: 24436473]
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2575] [PMID: 24436473]
[68]
Wang, S.; Xie, W.; Wang, D.; Peng, Z.; Zheng, Y.; Liu, N.; Dai, W.; Wang, Y.; Wang, Z.; Yang, Y.; Chen, Y. Discovery of a small molecule targeting SET-PP2A interaction to overcome BCR-ABLT315I mutation of chronic myeloid leukemia. Oncotarget, 2015, 6(14), 12128-12140.
[http://dx.doi.org/10.18632/oncotarget.3665] [PMID: 25900240]
[http://dx.doi.org/10.18632/oncotarget.3665] [PMID: 25900240]