General Review Article

低密度脂蛋白受体及其分子特性:从理论到降低低密度脂蛋白胆固醇的生化和药理学新方法

卷 27, 期 2, 2020

页: [317 - 333] 页: 17

弟呕挨: 10.2174/0929867325666180604114819

价格: $65

摘要

背景:低密度脂蛋白(LDL)受体(LDL- r)是一种跨膜蛋白,在有效的脂质稳态中起着至关重要的作用。各种治疗药物已被用于治疗血脂异常,但治疗靶点的结果仍有争议。 目的:综述和全面了解当前有关LDL-R的概念及其分子特性、代谢途径、影响LDL-R活性的因素和现有的药理学干预手段。此外,还介绍了LDL-R的非脂质相关特性。 方法:从PubMed数据库中提取文献,以识别1984年至2017年间关于LDL-R和治疗药物对血脂异常管理的论文。 结果:我们分析了与LDL-R相关的试剂的基本数据(甾醇调节元件结合蛋白- SREBPs、ARH蛋白、IDOL、甲状腺激素、血液病、kexin9 - PCSK-9、- iii蛋白转化酶subtilisin)以及LDL-R的非脂质相关特性,同时,所有相关的(常见的和新的)药理学干预(他汀类、纤维酸、胆固醇吸收抑制剂、胆汁酸螯合剂和PCSK- 9)也被提及。 结论: LDL-R及其分子特性与脂质内稳态有关,可能为心血管患者设定治疗目标,但这一问题一直存在争议。为了充分了解其特性,并找到可能对胆固醇稳态和各种疾病有益的潜在药物干预,以达到最适当的治疗目标,还需要进一步的研究。

关键词: 低密度脂蛋白受体,脂质代谢平衡,家族性高胆固醇血症,动脉粥样硬化,蛋白转化酶枯草素kexin9 (PCSK-9),甾醇调节元件结合蛋白(SREBPs)。

« Previous
[1]
Liu, S.L.; Sheng, R.; Jung, J.H.; Wang, L.; Stec, E.; Oconnor, M.J.; Song, S.; Bikkavilli, R.K.; Winn, R.A.; Lee, D.; Baek, K.; Ueda, K.; Levitan, I.; Kim, K.P.; Cho, W. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol., 2016, 13(3), 268-274.
[http://dx.doi.org/10.1038/nchembio.2268] [PMID: 28024150]
[2]
Goldstein, J.L.; Brown, M.S. History of discovery: the LDL receptor. Arterioscler. Thromb. Vasc. Biol., 2009, 29(4), 431-438.
[http://dx.doi.org/ 10.1161/ATVBAHA.108.179564] [PMID: 19299327]
[3]
Espinheira, M.D.C.; Vasconcelos, C.; Medeiros, A.M.; Alves, A.C.; Bourbon, M.; Guerra, A. Hypercholesterolemia - a disease with expression since childhood. Rev. Port. Cardiol., 2013, 32(5), 379-386.
[http://dx.doi.org/10.1016/j.repc.2012.09.008] [PMID: 23669405]
[4]
Millar, J.; Lagor, W. Overview of the LDL receptor: relevance to cholesterol metabolism and future approaches for the treatment of coronary heart disease. J. Receptor Ligand Channel Res., 2010, 3, 1-14.
[http://dx.doi.org/10.2147/JRLCR.S6033]
[5]
Babin, P.J.; Gibbons, G.F. The evolution of plasma cholesterol: direct utility or a “spandrel” of hepatic lipid metabolism? Prog. Lipid Res., 2009, 48(2), 73-91.
[http://dx.doi.org/10.1016/j.plipres.2008.11.002] [PMID: 19049814]
[6]
Waser, P.G.; Lüthi, U. Autoradiography of end-plates with carbon-14-calabash-curarine i and carbon-14-decamethonium. Nature, 1956, 178(4540), 981-981.
[http://dx.doi.org/10.1038/178981a0] [PMID: 13378493]
[7]
Graaf, A.V.D.; Avis, H.J.; Kusters, D.M.; Vissers, M.N.; Hutten, B.A.; Defesche, J.C.; Huijgen, R.; Fouchier, S.W.; Wijburg, F.A.; Kastelein, J.J.P.; Wiegman, A. Molecular basis of autosomal dominant hypercholesterolemia: assessment in a large cohort of hypercholesterolemic children. Circulation, 2011, 123(11), 1167-1173.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.979450] [PMID: 21382890]
[8]
Pećin, I.; Sućur, N.; Reiner, Z. Familiar hypercholesterolemia: do we think enough about this severe disease? Lijec. Vjesn., 2013, 135(5-6), 145-149.
[PMID: 23898695]
[9]
Tani, M.; Matera, R.; Horvath, K.V.; Hasan, T.S.; Schaefer, E.J.; Asztalos, B.F. The influence of ApoE-deficiency and LDL-receptor-deficiency on the HDL subpopulation profile in mice and in humans. Atherosclerosis, 2014, 233(1), 39-44.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.11.080] [PMID: 24529120]
[10]
Ooi, E.M.; Barrett, P.H.R.; Watts, G.F. The extended abnormalities in lipoprotein metabolism in familial hypercholesterolemia: developing a new framework for future therapies. Int. J. Cardiol., 2013, 168(3), 1811-1818.
[http://dx.doi.org/10.1016/j.ijcard.2013.06.069] [PMID: 23907036]
[11]
Schekman, R. Discovery of the cellular and molecular basis of cholesterol control. Proc. Natl. Acad. Sci. USA, 2013, 110(37), 14833-14836.
[http://dx.doi.org/10.1073/pnas.1312967110] [PMID: 23975928]
[12]
Go, G.W.; Mani, A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J. Biol. Med., 2012, 85(1), 19-28.
[PMID: 22461740]
[13]
Martínez-Oliván, J.; Arias-Moreno, X.; Velazquez-Campoy, A.; Millet, O.; Sancho, J. LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat. FEBS J., 2014, 281(6), 1534-1546.
[http://dx.doi.org/10.1111/febs.12721] [PMID: 24447298]
[14]
Gonias, S.L.; Campana, W.M. LDL receptor related protein-1: A regulator of inflammation in atherosclerosis, cancer and injury to the nervous system. Am. J. Pathol., 2014, 184(1), 18-27.
[http://dx.doi.org/10.1016/j.ajpath.2013.08.029] [PMID: 24128688]
[15]
Souverein, O.W.; Defesche, J.C.; Zwinderman, A.H.; Kastelein, J.J.; Tanck, M.W. Influence of LDL-receptor mutation type on age at first cardiovascular event in patients with familial hypercholesterolaemia. Eur. Heart J., 2007, 28(3), 299-304.
[http://dx.doi.org/10.1093/eurheartj/ehl366] [PMID: 17090611]
[16]
Ivaturi, S.; Wooten, C.J.; Nguyen, M.D.; Ness, G.C.; Lopez, D. Distribution of the LDL receptor within clathrin-coated pits and caveolae in rat and human liver. Biochem. Biophys. Res. Commun., 2014, 445(2), 422-427.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.019] [PMID: 24530906]
[17]
Ye, Q.; Lei, H.; Fan, Z.; Zheng, W.; Zheng, S. Difference in LDL receptor feedback regulation in macrophages and vascular smooth muscle cells: foam cell transformation under inflammatory stress. Inflammation, 2014, 37(2), 555-565.
[http://dx.doi.org/10.1007/s10753-013-9769-x] [PMID: 24297394]
[18]
Hiltunen, T.P.; Luoma, J.S.; Nikkari, T.; Herttuala, S.Y. Expression of LDL receptor, VLDL receptor, LDL receptor related protein, and scavenger receptor in rabbit atherosclerotic lesions: marked induction of scavenger receptor and VLDL receptor expression during lesion development. Circulation, 1998, 97(11), 1079-1086.
[http://dx.doi.org/10.1161/01.cir.97.11.1079] [PMID: 9531255]
[19]
Zhao, Z.; Michaely, P. Role of an intramolecular contact on lipoprotein uptake by the LDL receptor. Biochim. Biophys. Acta, 2011, 1811(6), 397-408.
[http://dx.doi.org/10.1016/j.bbalip.2011.04.002] [PMID: 21511053]
[20]
Saha, S.; Boyd, J.; Werner, J.M.; Knott, V.; Handford, P.A.; Campbell, I.D.; Downing, A. Solution structure of the LDL receptor EGF-AB pair: a paradigm for the assembly of tandem calcium binding EGF domains. Structure, 2001, 9(6), 451-456.
[http://dx.doi.org/10.1016/s0969-2126(01)00606-2] [PMID: 11435110]
[21]
Liu, S.; Vaziri, N.D. Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome. Nephrol. Dial. Transplant., 2014, 29(3), 538-543.
[http://dx.doi.org/10.1093/ndt/gft439] [PMID: 24166456]
[22]
Alipour, F.; Hassanabadi, A. Effects of sterol regulatory element-binding protein (SREBP) in chickens. Lipids Health Dis., 2012, 11(1), 20.
[http://dx.doi.org/ 10.1186/1476-511X-11-20] [PMID: 22309629]
[23]
Tolleshaug, H.; Goldstein, J.L.; Schneider, W.J.; Brown, M.S. Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell, 1982, 30(3), 715-724.
[http://dx.doi.org/10.1016/0092-8674(82)90276-8] [PMID: 6291781]
[24]
Huang, S.; Henry, L.; Ho, Y.K.; Pownall, H.J.; Rudenko, G. Mechanism of LDL binding and release probed by structure-based mutagenesis of the LDL receptor. J. Lipid Res., 2010, 51(2), 297-308.
[http://dx.doi.org/ 10.1194/jlr.M000422] [PMID: 19674976]
[25]
Zhao, Z.; Pompey, S.; Dong, H.; Weng, J.; Garuti, R.; Michaely, P. S-Nitrosylation of ARH is required for LDL uptake by the LDL receptor. J. Lipid Res., 2013, 54(6), 1550-1559.
[http://dx.doi.org/ 10.1194/jlr.M033167] [PMID: 23564733]
[26]
Farnier, M. PCSK9: from discovery to therapeutic applications. Arch. Cardiovasc. Dis., 2014, 107(1), 58-66.
[http://dx.doi.org/10.1016/j.acvd.2013.10.007] [PMID: 24373748]
[27]
Strøm, T.B.; Tveten, K.; Leren, T.P. PCSK9 acts as a chaperone for the LDL receptor in the endoplasmic reticulum. Biochem. J., 2014, 457(1), 99-105.
[http://dx.doi.org/10.1042/BJ20130930] [PMID: 24144304]
[28]
Reiner, Ž. Resistance and intolerance to statins. Nutr. Metab. Cardiovasc. Dis., 2014, 24(10), 1057-1066.
[http://dx.doi.org/10.1016/j.numecd.2014.05.009] [PMID: 24996502]
[29]
Catapano, A.L.; Graham, I.; Backer, G.D.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; Reiner, Ž.; Riccardi, G.; Taskinen, M.R.; Tokgozoglu, L.; Verschuren, W.M.M.; Vlachopoulos, C.; Wood, D.A.; Zamorano, J.L. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur. Heart J., 2016, 37(39), 2999-3058.
[http://dx.doi.org/10.1093/eurheartj/ehw272] [PMID: 27567407]
[30]
Saavedra, Y.G.L.; Zhang, J.; Seidah, N.G. PCSK9 prosegment chimera as novel inhibitors of LDLR degradation. PLoS One, 2013, 8(8)e72113
[http://dx.doi.org/10.1371/journal.pone.0072113] [PMID: 23951290]
[31]
Schiele, F.; Park, J.; Redemann, N.; Luippold, G.; Nar, H. An antibody against the C-terminal domain of PCSK9 lowers LDL cholesterol levels in vivo. J. Mol. Biol., 2014, 426(4), 843-852.
[http://dx.doi.org/10.1016/j.jmb.2013.11.011] [PMID: 24252255]
[32]
Wooten, C.J.; Adcock, A.F.; Agina-Obu, D.I.; Lopez, D. Having excess levels of PCSK9 is not sufficient to induce complex formation between PCSK9 and the LDL receptor. Arch. Biochem. Biophys., 2014, 562, 124-132.
[http://dx.doi.org/10.1016/j.abb.2014.01.018] [PMID: 24486405]
[33]
Sorrentino, V.; Scheer, L.; Santos, A.; Reits, E.; Bleijlevens, B.; Zelcer, N. Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible degrader of the LDLR (IDOL). J. Biol. Chem., 2011, 286(34), 30190-30199.
[http://dx.doi.org/10.1074/jbc.M111.249557] [PMID: 21734303]
[34]
Osborne, T.F.; Espenshade, P.J. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange TRIP it’s been. Genes Dev., 2009, 23(22), 2578-2591.
[http://dx.doi.org/ 10.1101/gad.1854309] [PMID: 19933148]
[35]
Tanaka, Y.; Shimada, M.; Nagaoka, S. l-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a transforming growth factor-alpha signalling pathway. Biochem. Biophys. Res. Commun., 2014, 444(3), 401-405.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.095] [PMID: 24472543]
[36]
Shin, D.J.; Osborne, T.F. Thyroid hormone regulation and cholesterol metabolism are connected through sterol regulatory element-binding protein-2 (SREBP-2). J. Biol. Chem., 2003, 278(36), 34114-34118.
[http://dx.doi.org/10.1074/jbc.M305417200] [PMID: 12829694]
[37]
Goldberg, I.J.; Huang, L.S.; Huggins, L.A.; Yu, S.; Nagareddy, P.R.; Scanlan, T.S.; Ehrenkranz, J.R. Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology, 2012, 153(11), 5143-5149.
[http://dx.doi.org/10.1210/en.2012-1572] [PMID: 22948212]
[38]
Hartman, C.; Tamary, H.; Tamir, A.; Shabad, E.; Levine, C.; Koren, A.; Shamir, R. Hypocholesterolemia in children and adolescents with β-thalassemia intermedia. J. Pediatr., 2002, 141(4), 543-547.
[http://dx.doi.org/10.1067/mpd.2002.127498] [PMID: 12378195]
[39]
Papanastasiou, D.A.; Siorokou, T.; Haliotis, F.A. Beta-thalassaemia and factors affecting the metabolism of lipids and lipoproteins. Haematologia (Budap.), 1996, 27(3), 143-153.
[PMID: 14653451]
[40]
Naoum, F.A.; Gualandro, S.F.; Latrilha, M.D.C.M.; Maranhão, R.C. Plasma kinetics of a cholesterol-rich microemulsion in subjects with heterozygous β-thalassemia. Am. J. Hematol., 2004, 77(4), 340-345.
[http://dx.doi.org/10.1002/ajh.20206] [PMID: 15551284]
[41]
Hatzitolios, A.; Athyros, V.; Karagiannis, A.; Savopoulos, C.; Charalambous, C.; Kyriakidis, G.; Milidis, T.; Papathanakis, C.; Bitli, A.; Vogiatsis, I.; Ntaios, G.; Katsiki, N.; Symeonidis, A.; Tziomalos, K.; Mikhailidis, D. Implementation of strategy for the management of overt dyslipidemia: The IMPROVE-dyslipidemia study. Int. J. Cardiol., 2009, 134(3), 322-329.
[http://dx.doi.org/10.1016/j.ijcard.2009.02.001] [PMID: 19268376]
[42]
Kosmidou, M.; Hatzitolios, A.I.; Molyva, D.; Raikos, N.; Savopoulos, C.; Daferera, N.; Kokkas, V.; Goulas, A. An association study between catalase -262C>T gene polymorphism, sodium-lithium countertrasport activity, insulin resistance, blood lipid parameters and their response to atorvastatin, in greek dyslipidaemic patients and normolipidaemic controls. Free Radic. Res., 2009, 43(4), 385-389.
[43]
Tziomalos, K.; Giampatzis, V.; Bouziana, S.D.; Spanou, M.; Kostaki, S.; Papadopoulou, M.; Angelopoulou, S.M.; Konstantara, F.; Savopoulos, C.; Hatzitolios, A.I. Comparative effects of more versus less aggressive treatment with statins on the long-term outcome of patients with acute ischemic stroke. Atherosclerosis, 2015, 243(1), 65-70.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.043] [PMID: 26355807]
[44]
Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med., 2001, 5(4), 378-387.
[http://dx.doi.org/10.1111/j.1582-4934.2001.tb00172.x] [PMID: 12067471]
[45]
Trapani, L. New compounds able to control hepatic cholesterol metabolism: is it possible to avoid statin treatment in aged people? World J. Hepatol., 2013, 5(12), 676-684.
[http://dx.doi.org/10.4254/wjh.v5.i12.676] [PMID: 24432184]
[46]
Konrad, R.J.; Troutt, J.S.; Cao, G. Effects of currently prescribed LDL-C-lowering drugs on PCSK9 and implications for the next generation of LDL-C-lowering agents. Lipids Health Dis., 2011, 10(1), 38.
[http://dx.doi.org/10.1186/1476-511X-10-38] [PMID: 21352602]
[47]
Hayashi, H.; Kawamura, M. Lowering LDL cholesterol, but not raising LDL receptor activity, by ezetimibe. J. Clin. Lipidol., 2013, 7(6), 632-636.
[http://dx.doi.org/10.1016/j.jacl.2013.06.011] [PMID: 24314361]
[48]
Vanuzzo, D. The epidemiological concept of residual risk. Intern. Emerg. Med., 2011, 6(S1), 45-51.
[http://dx.doi.org/10.1007/s11739-011-0669-5] [PMID: 22009612]
[49]
Lipinski, M.J.; Benedetto, U.; Escarcega, R.O.; Biondi-Zoccai, G.; Lhermusier, T.; Baker, N.C.; Torguson, R.; Brewer, H.B.; Waksman, R. The impact of proprotein convertase subtilisin-Kexin Type 9 serine protease inhibitors on lipid levels and outcomes in patients with primary hypercholesterolaemia: a network meta-analysis. Eur. Heart J., 2016, 37(6), 536-545.
[http://dx.doi.org/10.1093/eurheartj/ehv563] [PMID: 26578202]
[50]
Robinson, J.G.; Farnier, M.; Krempf, M.; Bergeron, J.; Luc, G.; Averna, M.; Stroes, E.S.; Langslet, G.; Raal, F.J.; Shahawy, M.E.; Koren, M.J.; Lepor, N.E.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Kastelein, J.J. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med., 2015, 372(16), 1489-1499.
[http://dx.doi.org/10.1056/NEJMoa1501031] [PMID: 25773378]
[51]
Schwartz, G.G.; Bessac, L.; Berdan, L.G.; Bhatt, D.L.; Bittner, V.; Diaz, R.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Roe, M.T.; Rorick, T.; Sasiela, W.J.; Shirodaria, C.; Szarek, M.; Tamby, J.F.; Tricoci, P.; White, H.; Zeiher, A.; Steg, P.G. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am. Heart J., 2014, 168(5), 682-689.
[http://dx.doi.org/10.1016/j.ahj.2014.07.028] [PMID: 25440796]
[52]
Koren, M.J.; Giugliano, R.P.; Raal, F.J.; Sullivan, D.; Bolognese, M.; Langslet, G.; Civeira, F.; Somaratne, R.; Nelson, P.; Liu, T.; Scott, R.; Wasserman, S.M.; Sabatine, M.S. Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the open-label study of long-term evaluation against LDL-C (OSLER) randomized trial. Circulation, 2014, 129(2), 234-243.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007012] [PMID: 24255061]
[53]
Cohen, J.C. Emerging LDL therapies: using human genetics to discover new therapeutic targets for plasma lipids. J. Clin. Lipidol., 2013, 7(3), S1-S5.
[http://dx.doi.org/10.1016/j.jacl.2013.03.005] [PMID: 23642322]
[54]
Syed, G.H.; Tang, H.; Khan, M.; Hassanein, T.; Liu, J.; Siddiqui, A.; Diamond, M.S. Hepatitis C virus stimulates low-density lipoprotein receptor expression to facilitate viral propagation. J. Virol., 2014, 88(5), 2519-2529.
[http://dx.doi.org/10.1128/JVI.02727-13] [PMID: 24352472]
[55]
Awan, Z.; Dubuc, G.; Faraj, M.; Dufour, R.; Seidah, N.G.; Davignon, J.; Rabasa-Lhoret, R.; Baass, A. The effect of insulin on circulating PCSK9 in postmenopausal obese women. Clin. Biochem., 2014, 47(12), 1033-1039.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.03.022] [PMID: 24721682]
[56]
Zelcer, N.; Hong, C.; Boyadjian, R.; Tontonoz, P. LXR regulates cholesterol uptake through idol-dependent ubiquitination of the LDL receptor. Science, 2009, 325(5936), 100-104.
[http://dx.doi.org/10.1126/science.1168974] [PMID: 19520913]
[57]
Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; Beckmann, J.S.; Bragg-Gresham, J.L.; Chang, H.Y.; Demirkan, A.; Den Hertog, H.M.; Do, R.; Donnelly, L.A.; Ehret, G.B.; Esko, T.; Feitosa, M.F.; Ferreira, T.; Fischer, K.; Fontanillas, P.; Fraser, R.M.; Freitag, D.F.; Gurdasani, D.; Heikkilä, K.; Hyppönen, E.; Isaacs, A.; Jackson, A.U.; Johansson, Å.; Johnson, T.; Kaakinen, M.; Kettunen, J.; Kleber, M.; Li, X.; Luan, J.; Lyytikäinen, L.P.; Magnusson, P.K.E.; Mangino, M.; Mihailov, E.; Montasser, M.E.; Müller-Nurasyid, M.; Nolte, I.M.; O’Connell, J.R.; Palmer, C.D.; Perola, M.; Petersen, A.K.; Sanna, S.; Saxena, R.; Service, S.K.; Shah, S.; Shungin, D.; Sidore, C.; Song, C.; Strawbridge, R.; Surakka, I.; Tanaka, T.; Teslovich, T.M.; Thorleifsson, G.; Van den Herik, E.G.; Voight, B.F. Volcik, K.A.; Waite, L.L.; Wong, A.; Wu, Y.; Zhang, W.; Absher, D.; Asiki, G.; Barroso, I.; Been, L.F.; Bolton, J.L.; Bonnycastle, L.L.; Brambilla, P.; Burnett, M.S.; Cesana, G.; Dimitriou, M.; Doney, A.S.F.; Döring, A.; Elliott, P.; Epstein, S.E.; Ingi Eyjolfsson, G.; Gigante, B.; Goodarzi, M.O.; Grallert, H.; Gravito, M.L.; Groves, C.J.; Hallmans, G.; Hartikainen, A.L.; Hayward, C.; Hernandez, D.; Hicks, A.A.; Holm, H.; Hung, Y.J.; Illig, T.; Jones, M.R.; Kaleebu, P.; Kastelein, J.J.P.; Khaw, K.T.; Kim, E.; Klopp, N.; Komulainen, P.; Kumari, M.; Langenberg, C.; Lehtimäki, T.; Lin, S.Y.; Lindström, J.; Loos, R.J.F.; Mach, F.; McArdle, W.L.; Meisinger, C.; Mitchell, B.D.; Müller, G.; Nagaraja, R.; Narisu, N.; Nieminen, T.V.M.; Nsubuga, R.N.; Olafsson, I.; Ong, K.K.; Palotie, A.; Papamarkou, T.; Pomilla, C.; Pouta, A.; Rader, D.J.; Reilly, M.P.; Ridker, P.M.; Rivadeneira, F.; Rudan, I.; Ruokonen, A.; Samani, N.; Scharnagl, H.; Seeley, J.; Silander, K.; Stančáková, A.; Stirrups, K.; Swift, A.J.; Tiret, L.; Uitterlinden, AG.; van Pelt, L.J.; Vedantam, S.; Wainwright, N.; Wijmenga, C.; Wild, S.H.; Willemsen, G.; Wilsgaard, T.; Wilson, J.F.; Young, E.H.; Zhao, J.H.; Adair, L.S.; Arveiler, D.; Assimes, T.L.; Bandinelli, S.; Bennett, F.; Bochud, M.; Boehm, B.O.; Boomsma, D.I.; Borecki, I.B.; Bornstein, S.R.; Bovet, P.; Burnier, M.; Campbell, H.; Chakravarti, A.; Chambers, J.C.; Chen, Y.I.; Collins, F.S.; Cooper, R.S.; Danesh, J.; Dedoussis, G.; de Faire, U.; Feranil, A.B.; Ferrières, J.; Ferrucci, L.; Freimer, N.B.; Gieger, C.; Groop, L.C.; Gudnason, V.; Gyllensten, U.; Hamsten, A.; Harris, T.B.; Hingorani, A.; Hirschhorn, J.N.; Hofman, A.; Hovingh, G.K.; Hsiung, C.A.; Humphries, S.E.; Hunt, S.C.; Hveem, K.; Iribarren, C.; Järvelin, M.R.; Jula, A.; Kähönen, M.; Kaprio, J.; Kesäniemi, A.; Kivimaki, M.; Kooner, J.S.; Koudstaal, P.J.; Krauss, R.M.; Kuh, D.; Kuusisto, J.; Kyvik, K.O.; Laakso, M.; Lakka, T.A.; Lind, L.; Lindgren, C.M.; Martin, N.G.; März, W.; McCarthy, M.I.; McKenzie, C.A.; Meneton, P.; Metspalu, A.; Moilanen, L.; Morris, A.D.; Munroe, P.B.; Njølstad, I.; Pedersen, N.L.; Power, C.; Pramstaller, P.P.; Price, J.F.; Psaty, B.M.; Quertermous, T.; Rauramaa, R.; Saleheen, D.; Salomaa, V.; Sanghera, D.K.; Saramies, J.; Schwarz, P.E.H.; Sheu, W.H.; Shuldiner, A.R.; Siegbahn, A.; Spector, T.D.; Stefansson, K.; Strachan, D.P.; Tayo, B.O.; Tremoli, E.; Tuomilehto, J.; Uusitupa, M.; van Duijn, C.M.; Vollenweider, P.; Wallentin, L.; Wareham, N.J.; Whitfield, J.B.; Wolffenbuttel, B.H.R.; Ordovas, J.M.; Boerwinkle, E.; Palmer, C.N.A.; Thorsteinsdottir, U.; Chasman, D.I.; Rotter, J.; Franks, P.W.; Ripatti, S.; Cupples, L.A.; Sandhu, M.S.; Rich, S.S.; Boehnke, M.; Deloukas, P.; Kathiresan, S.; Mohlke, K.L.; Ingelsson, E.; Abecasis, G.R.; Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat. Genet., 2013, 45(11), 1274-1283.
[http://dx.doi.org/10.1038/ng.2797] [PMID: 24097068]
[58]
Sharpe, L.J.; Cook, E.C.; Zelcer, N.; Brown, A.J. The UPS and downs of cholesterol homeostasis. Trends Biochem. Sci., 2014, 39(11), 527-535.
[http://dx.doi.org/10.1016/j.tibs.2014.08.008] [PMID: 25220377]
[59]
Nelson, J.K.; Sorrentino, V.; Trezza, R.A.; Heride, C.; Urbe, S.; Distel, B.; Zelcer, N. The deubiquitylase USP2 regulates the LDLR pathway by counteracting the E3-ubiquitin ligase IDOL. Circ. Res., 2016, 118(3), 410-419.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307298] [PMID: 26666640]
[60]
Du, F.; Hui, Y.; Zhang, M.; Linton, M.F.; Fazio, S.; Fan, D. Novel domain interaction regulates secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein. J. Biol. Chem., 2011, 286(50), 43054-43061.
[http://dx.doi.org/10.1074/jbc.M111.273474] [PMID: 22027821]
[61]
Surdo, P.L.; Bottomley, M.J.; Calzetta, A.; Settembre, E.C.; Cirillo, A.; Pandit, S.; Ni, Y.G.; Hubbard, B.; Sitlani, A.; Carfí, A. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral PH. EMBO Rep., 2011, 12(12), 1300-1305.
[http://dx.doi.org/10.1038/embor.2011.205] [PMID: 22081141]
[62]
Seidah, N.G.; Awan, Z.; Chrétien, M.; Mbikay, M. Pcsk9: a key modulator of cardiovascular health. Circulation Research, 2014, 114(6), 1022-1036.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.301621] [PMID: 24625727]
[63]
Bottomley, M.J.; Cirillo, A.; Orsatti, L.; Ruggeri, L.; Fisher, T.S.; Santoro, J.C.; Cummings, R.T.; Cubbon, R.M.; Surdo, P.L.; Calzetta, A.; Noto, A.; Baysarowich, J.; Mattu, M.; Talamo, F.; Francesco, R.D.; Sparrow, C.P.; Sitlani, A.; Carfí, A. Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants. J. Biol. Chem., 2008, 284(2), 1313-1323.
[http://dx.doi.org/10.1074/jbc.M808363200] [PMID: 19001363]
[64]
Kwon, H.J.; Lagace, T.A.; Mcnutt, M.C.; Horton, J.D.; Deisenhofer, J. Molecular basis for LDL receptor recognition by PCSK9. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 1820-1825.
[http://dx.doi.org/10.1073/pnas.0712064105] [PMID: 18250299]
[65]
Piper, D.E.; Jackson, S.; Liu, Q.; Romanow, W.G.; Shetterly, S.; Thibault, S.T.; Shan, B.; Walker, N.P. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Structure, 2007, 15(5), 545-552.
[http://dx.doi.org/ 10.1016/j.str.2007.04.004] [PMID: 17502100]
[66]
Endo, A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res., 1992, 33(11), 1569-1582.
[PMID: 1464741]
[67]
Brown, M.; Goldstein, J. A receptor-mediated pathway for cholesterol homeostasis. Science, 1986, 232(4746), 34-47.
[http://dx.doi.org/10.1126/science.3513311] [PMID: 3513311]
[68]
Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature, 1990, 343(6257), 425-430.
[http://dx.doi.org/10.1038/343425a0] [PMID: 1967820]
[69]
Brown, M.S.; Goldstein, J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell, 1997, 89(3), 331-340.
[http://dx.doi.org/10.1016/s0092-8674(00)80213-5] [PMID: 9150132]
[70]
Ballantyne, C.M.; Mckenney, J.; Trippe, B.S. Efficacy and safety of an extended-release formulation of fluvastatin for once-daily treatment of primary hypercholesterolemia. Am. J. Cardiol., 2000, 86(7), 759-763.
[http://dx.doi.org/10.1016/s0002-9149(00)01076-6] [PMID: 11018196]
[71]
Mcnutt, M.C.; Lagace, T.A.; Horton, J.D. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J. Biol. Chem., 2007, 282(29), 20799-20803.
[http://dx.doi.org/10.1074/jbc.C700095200] [PMID: 17537735]
[72]
Grefhorst, A.; Mcnutt, M.C.; Lagace, T.A.; Horton, J.D. Plasma PCSK9 preferentially reduces liver LDL receptors in mice. J. Lipid Res., 2008, 49(6), 1303-1311.
[http://dx.doi.org/10.1194/jlr.M800027-JLR200] [PMID: 18354138]
[73]
Lagace, T.A.; Curtis, D.E.; Garuti, R.; Mcnutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J. Clin. Invest., 2006, 116(11), 2995-3005.
[http://dx.doi.org/10.1172/JCI29383] [PMID: 17080197]
[74]
Zhang, D.W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; Mcdonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612.
[http://dx.doi.org/10.1074/jbc.M702027200] [PMID: 17452316]
[75]
Zhang, D.W.; Garuti, R.; Tang, W.J.; Cohen, J.C.; Hobbs, H.H. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 13045-13050.
[http://dx.doi.org/ 10.1073/pnas.0806312105] [PMID: 18753623]
[76]
Leren, T.P. Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis, 2014, 237(1), 76-81.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.08.038] [PMID: 25222343]
[77]
Stein, E.A.; Swergold, G.D. Potential of proprotein convertase subtilisin/kexin type 9 based therapeutics. Curr. Atheroscler. Rep., 2013, 15(3), 310.
[http://dx.doi.org/10.1007/s11883-013-0310-3] [PMID: 23371064]
[78]
Lopez, D. Inhibition of PCSK9 as a novel strategy for the treatment of hypercholesterolemia. Drug News Perspect., 2008, 21(6), 323-330.
[http://dx.doi.org/10.1358/dnp.2008.21.6.1246795] [PMID: 18836590]
[79]
Steinberg, D.; Witztum, J.L. Inhibition of PCSK9: a powerful weapon for achieving ideal LDL cholesterol levels. Proc. Natl. Acad. Sci. USA, 2009, 106(24), 9546-9547.
[http://dx.doi.org/ 10.1073/pnas.0904560106] [PMID: 19506257]
[80]
Mayer, G.; Poirier, S.; Seidah, N.G. Annexin A2 is a C-Terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J. Biol. Chem., 2008, 283(46), 31791-31801.
[http://dx.doi.org/10.1074/jbc.M805971200] [PMID: 18799458]
[81]
Bristol-Myers Squibb selects Isis drug targeting PCSK9 as development candidate for prevention and treatment of cardiovascular disease". Press Release. FierceBiotech, 2008-04-08. Retrieved 2010-09-18.
[82]
Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; Fernando, C.; Kauffman, R.S.; Kallend, D.; Vaishnaw, A.; Simon, A. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med., 2017, 376(1), 41-51.
[http://dx.doi.org/10.1056/NEJMoa1609243] [PMID: 27959715]
[83]
Sheridan, C. Phase 3 data for PCSK9 inhibitor wows. Nat. Biotechnol., 2013, 31(12), 1057-1058.
[http://dx.doi.org/10.1038/nbt1213-1057] [PMID: 24316621]
[84]
Graham, M.J.; Lemonidis, K.M.; Whipple, C.P.; Subramaniam, A.; Monia, B.P.; Crooke, S.T.; Crooke, R.M. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J. Lipid Res., 2007, 48(4), 763-767.
[http://dx.doi.org/10.1194/jlr.C600025-JLR200] [PMID: 17242417]
[85]
Gupta, N.; Fisker, N.; Asselin, M.C.; Lindholm, M.; Rosenbohm, C.; Ørum, H.; Elmén, J.; Seidah, N.G.; Straarup, E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One, 2010, 5(5)e10682
[http://dx.doi.org/10.1371/journal.pone.0010682] [PMID: 20498851]
[86]
Lindholm, M.W.; Elmén, J.; Fisker, N.; Hansen, H.F.; Persson, R.; Møller, M.R.; Rosenbohm, C.; Ørum, H.; Straarup, E.M.; Koch, T. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol. Ther., 2012, 20(2), 376-381.
[http://dx.doi.org/10.1038/mt.2011.260] [PMID: 22108858]
[87]
"Alnylam reports positive preliminary clinical results for ALN-PCS, an RNAi therapeutic targeting PCSK9 for the treatment of severe hypercholesterolemia". Press Release. BusinessWire, 2011-01-04. Archived from the original on 2013-02-21. Retrieved 2011-01-04.
[88]
Frank-Kamenetsky, M.; Grefhorst, A.; Anderson, N.N.; Racie, T.S.; Bramlage, B.; Akinc, A.; Butler, D.; Charisse, K.; Dorkin, R.; Fan, Y.; Gamba-Vitalo, C.; Hadwiger, P.; Jayaraman, M.; John, M.; Jayaprakash, K.N.; Maier, M.; Nechev, L.; Rajeev, K.G.; Read, T.; Rohl, I.; Soutschek, J.; Tan, P.; Wong, J.; Wang, G.; Zimmermann, T.; Fougerolles, A.D.; Vornlocher, H.P.; Langer, R.; Anderson, D.G.; Manoharan, M.; Koteliansky, V.; Horton, J.D.; Fitzgerald, K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11915-11920.
[http://dx.doi.org/10.1073/pnas.0805434105] [PMID: 18695239]
[89]
Shan, L.; Pang, L.; Zhang, R.; Murgolo, N.J.; Lan, H.; Hedrick, J.A. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem. Biophys. Res. Commun., 2008, 375(1), 69-73.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.106] [PMID: 18675252]
[90]
Kurasawa, J.H.; Shestopal, S.A.; Karnaukhova, E.; Struble, E.B.; Lee, T.K.; Sarafanov, A.G. Mapping the binding region on the low density lipoprotein receptor for blood coagulation factor VIII. J. Biol. Chem., 2013, 288(30), 22033-22041.
[http://dx.doi.org/10.1074/jbc.M113.468108] [PMID: 23754288]
[91]
Liu, J.; Xu, A.; Lam, K.S.L.; Wong, N.S.; Chen, J.; Shepherd, P.R.R.; Wang, Y. Cholesterol-induced mammary tumorigenesis is enhanced by adiponectin deficiency: role of LDL receptor upregulation. Oncotarget, 2013, 4(10), 1804-1818.
[http://dx.doi.org/ 10.18632/oncotarget.1364] [PMID: 24113220]
[92]
Guo, D.; Bell, E.; Mischel, P.; Chakravarti, A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr. Pharm. Des., 2014, 20(15), 2619-2626.
[http://dx.doi.org/10.2174/13816128113199990486] [PMID: 23859617]
[93]
Kanekiyo, T.; Cirrito, J.R.; Liu, C.C.; Shinohara, M.; Li, J.; Schuler, D.R.; Shinohara, M.; Holtzman, D.M.; Bu, G. Neuronal clearance of amyloid- by endocytic receptor LRP1. J. Neurosci., 2013, 33(49), 19276-19283.
[http://dx.doi.org/10.1523/JNEUROSCI.3487-13.2013] [PMID: 24305823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy