[1]
Rokhmat, M.; Wibowo, E. Sutisna; Khairurrijal; Abdullah, M. Performance improvement of TiO2/CuO solar cell by growing Copper particle using fix current electroplating method. Proc Eng., 2017, 170, 72-77.
[2]
Jeong, D.; Lee, J.; Hong, H.; Choi, D.; Cho, J-W.; Kim, S-K.; Nam, Y. Absorption mechanism and performance characterization of CuO nanostructured absorbers. Solar. Energy Mater. Solar. Cells, 2017, 169, 270-279.
[3]
Zhang, Z-K.; Guo, D-Z.; Zhang, G-M. Preparation, characterization and catalytic property of CuO nano/microspheres via thermal decomposition of cathode-plasma generating Cu2(OH)3NO3 nano/microspheres. J. Colloid Interface Sci., 2011, 357(1), 95-100.
[4]
Zhan, Y.; Zhou, X.; Fu, B.; Chen, Y. Catalytic wet peroxide oxidation of azo dye (Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst. J. Hazard. Mater., 2011, 187(1), 348-354.
[5]
Xu, W.; Lan, R.; Du, D.; Humphreys, J.; Walker, M.; Wu, Z.; Wang, H.; Tao, S. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl. Catal. B Environ, 2017, 218, 470-479.
[6]
Dandeneau, C.S.; Jeon, Y-H.; Shelton, C.T.; Plant, T.K.; Cann, D.P.; Gibbons, B.J. Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films, 2009, 517(15), 4448-4454.
[7]
Zhang, X.; Sun, S.; Lv, J.; Tang, L.; Kong, C.; Song, X.; Yang, Z. Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic glucose detection. J. Mater. Chem. A ., 2014, 2(26), 10073-10080.
[8]
Şişman, O.; Kılınç, N.; Öztürk, Z.Z. Structural, electrical and H2 sensing properties of copper oxide nanowires on glass substrate by anodization. Sensors. Actuat. B Chem., 2016, 236, 1118-1125.
[9]
Wang, Z.; Han, P.; Mao, X.; Yin, Y.; Cao, Y. Sensitive detection of glutathione by using DNA-templated copper nanoparticles as electrochemical reporters. Sensors. Actuat. B Chem., 2017, 238, 325-330.
[10]
Yang, J.; Lin, Q.; Yin, W.; Jiang, T.; Zhao, D.; Jiang, L. A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites. Sensors. Actuat. B Chem., 2017, 253, 1087-1095.
[11]
Korschelt, K.; Ragg, R.; Metzger, C.S.; Kluenker, M.; Oster, M.; Barton, B.; Panthöfer, M.; Strand, D.; Kolb, U.; Mondeshki, M.; Strand, S.; Brieger, J.; Tahir, M.N.; Tremel, W. Glycine-functionalized copper (II) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale, 2017, 9(11), 3952-3960.
[12]
Henrist, C.; Traina, K.; Hubert, C.; Toussaint, G.; Rulmont, A.; Cloots, R. Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis. J. Crystal. Growth, 2003, 254(1-2), 176-187.
[13]
Luo, Y-H.; Huang, J.; Jin, J.; Peng, X.; Schmitt, W.; Ichinose, I. Formation of positively charged copper hydroxide nanostrands and their structural characterization. Chem. Mater., 2006, 18(7), 1795-1802.
[14]
Liu, B. One-dimensional copper hydroxide nitrate nanorods and nanobelts for radiochemical applications. Nanoscale, 2012, 4(22), 7194-7198.
[15]
Biswick, T.; Jones, W.; Pacuła, A.; Serwicka, E. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates. J. Solid State Chem., 2006, 179(1), 49-55.
[16]
Wang, X.; Huang, L. A novel one-step method to synthesize copper nitrate hydroxide nanorings. Trans. Nonferrous Metals. Soc. China, 2009, 19, s480-s484.
[17]
Park, S-H.; Kim, H.J. Unidirectionally aligned copper hydroxide crystalline nanorods from two-dimensional Copper Hydroxy Nitrate. J. Am. Chem. Soc., 2004, 126(44), 14368-14369.
[18]
Di, L.; Duan, D.; Zhan, Z.; Zhang, X. Gas-liquid cold plasma for synthesizing copper hydroxide nitrate nanosheets with high adsorption capacity. Adv. Mater. Interfaces, 2016, 3(24)1600760
[19]
Akhavan, O.; Azimirad, R.; Safa, S.; Hasani, E. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem., 2011, 21(26), 9634-9640.
[20]
Xiao-Jiao, Q.; Qian, W.; Hai-Yan, G.; Zhao, Y.; Guo-Dong, L. Hollow spindle-shaped CuO/Cu2(OH)2CO3 nanocomposites: Synthesis and gas sensing property. Chinese J. Inorg. Chem., 2015, 31, 1010-1018.
[21]
Patil, U.M.; Nam, M-S.; Lee, S.C.; Liu, S.; Kang, S.; Park, B.H.; Jun, S.C. Temperature influenced chemical growth of hydrous copper oxide/hydroxide thin film electrodes for high performance supercapacitors. J. Alloys Comp., 2017, 701, 1009-1018.
[22]
Niu, H.; Yang, Q.; Tang, K. A new route to copper nitrate hydroxide microcrystals. Mater. Sci. Eng. B, 2006, 135(2), 172-175.
[23]
Ahn, J.K.; Kim, H.Y.; Baek, S.; Park, H.G. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters. Biosens. Bioelectron., 2017, 93, 330-334.
[24]
Joshi, N.; Banerjee, S. PVP coated copper-iron oxide nanocomposite as an efficient catalyst for Click reactions. Tetrahedron Lett., 2015, 56(28), 4163-4169.
[25]
Liu, H.; Liu, Q.; Zhang, J.; Yin, C.; Zhao, Y.; Yin, S.; Liu, C.; Sun, W. PVP-assisted synthesis of unsupported NiMo catalysts with enhanced hydrodesulfurization activity. Fuel Process. Technol., 2017, 160, 93-101.
[26]
Wang, H.; Qiao, X.; Chen, J.; Wang, X.; Ding, S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys., 2005, 94(2-3), 449-453.
[27]
Kourde-Hanafi, Y.; Loulergue, P.; Szymczyk, A.; Bruggen, B.V.; Nachtnebel, M.; Rabiller-Baudry, M.; Audic, J-L.; Pölt, P.; Baddari, K. Influence of PVP content on degradation of PES/PVP membranes: Insights from characterization of membranes with controlled composition. J. Membrane. Sci., 2017, 533, 261-269.
[28]
Nekouei, R.K.; Rashchi, F.; Ravanbakhsh, A. Copper nanopowder synthesis by electrolysis method in nitrate and sulfate solutions. Powder Technol., 2013, 250, 91-96.
[29]
Bovio, B.; Locchi, S. Crystal structure of the orthorhombic basic copper nitrate, Cu2(OH)3NO3. J. Crystallogr. Spectroscopic Res., 1982, 12(6), 507-517.
[30]
Meyn, M.; Beneke, K.; Lagaly, G. Anion-exchange reactions of hydroxy double salts. Inorg. Chem., 1993, 32(7), 1209-1215.