Review Article

氧化应激对甘油醛-3-磷酸脱氢酶催化和非糖酵解功能的影响

卷 27, 期 13, 2020

页: [2040 - 2058] 页: 19

弟呕挨: 10.2174/0929867325666180530101057

价格: $65

摘要

背景: Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) is a unique enzyme that, besides its main function in glycolysis (催化甘油醛-3-磷酸氧化),具有许多非糖酵解活性。本综述总结了有关氧化应激在GAPDH酶活性和非糖酵解功能调节中的作用的信息。 方法:基于文献数据分析和我们研究小组的研究结果,提出了通过酶活性位点巯基氧化来调节GAPDH功能的机制。 结果:GAPDH氧化的机制包括将催化性半胱氨酸(Cys150)连续氧化为亚磺酸,亚磺酸和磺酸衍生物,从而导致该酶完全失活。半胱氨酸亚磺酸与还原型谷胱甘肽(GSH)反应形成混合的二硫键(S-谷胱甘肽化的GAPDH),进一步与Cys154反应,在酶的活性位点产生二硫键。与亚磺酸和磺酸相反,混合的二硫键和分子内二硫键是可逆的氧化产物,可在GSH或硫氧还蛋白存在下还原。 结论:由于Cys150的反应性增强,不可避免地要氧化GAPDH活性位上的巯基。 Cys150的不可逆氧化可通过谷胱甘肽化和与Cys154的二硫键来防止。 GAPDH活性位点中巯基的氧化/还原可用于调节糖酵解和该酶的许多副作用,包括诱导细胞凋亡。

关键词: 3-磷酸甘油醛脱氢酶,巯基基团,氧化,S-亚硝基化,S-谷胱甘肽化,氧化应激。

[1]
Seidler, N.W. GAPDH: biological properties and diversity in: Advances in experimental medicine and biology; Crusio, W.E.; Lambris, J.D.; Radeke, H.H.; Rezaei, N. (Eds.), Springer, 2013, Vol. 985.
[http://dx.doi.org/10.1007/978-94-007-4716-6]
[2]
Harris, J.I.; Waters, M. Glyceraldehyde 3-Phosphate Dehydrogenase in: The enzymes, 3rd edition, Oxidationreduction Part C; Boyer, P. D., Ed.; Academic Press: London, 1976, vol. XIII.
[3]
Peralta, D.; Bronowska, A.K.; Morgan, B.; Dóka, É.; Van Laer, K.; Nagy, P.; Gräter, F.; Dick, T.P. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol., 2015, 11(2), 156-163.
[http://dx.doi.org/10.1038/nchembio.1720] [PMID: 25580853]
[4]
Schmalhausen, E.V.; Nagradova, N.K.; Boschi-Muller, S.; Branlant, G.; Muronetz, V.I. Mildly oxidized GAPDH: the coupling of the dehydrogenase and acyl phosphatase activities. FEBS Lett., 1999, 452(3), 219-222.
[http://dx.doi.org/10.1016/S0014-5793(99)00627-4] [PMID: 10386594]
[5]
Zaffagnini, M.; Michelet, L.; Marchand, C.; Sparla, F.; Decottignies, P.; Le Maréchal, P.; Miginiac-Maslow, M.; Noctor, G.; Trost, P.; Lemaire, S.D. The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation. FEBS J., 2007, 274(1), 212-226.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05577.x] [PMID: 17140414]
[6]
Deng, X.; Liang, H.; Ulanovskaya, O.A.; Ji, Q.; Zhou, T.; Sun, F.; Lu, Z.; Hutchison, A.L.; Lan, L.; Wu, M.; Cravatt, B.F.; He, C. Steady-state hydrogen peroxide induces glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa. J. Bacteriol., 2014, 196(14), 2499-2513.
[http://dx.doi.org/10.1128/JB.01538-14] [PMID: 24769698]
[7]
Cabiscol, E.; Piulats, E.; Echave, P.; Herrero, E.; Ros, J. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem., 2000, 275(35), 27393-27398.
[http://dx.doi.org/10.1074/jbc.M003140200] [PMID: 10852912]
[8]
Costa, V.M.V.; Amorim, M.A.; Quintanilha, A.; Moradas-Ferreira, P. Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic. Biol. Med., 2002, 33(11), 1507-1515.
[http://dx.doi.org/10.1016/S0891-5849(02)01086-9] [PMID: 12446208]
[9]
Shenton, D.; Perrone, G.; Quinn, K.A.; Dawes, I.W.; Grant, C.M. Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J. Biol. Chem., 2002, 277(19), 16853-16859.
[http://dx.doi.org/10.1074/jbc.M200559200] [PMID: 11882660]
[10]
Nakajima, H.; Amano, W.; Fujita, A.; Fukuhara, A.; Azuma, Y-T.; Hata, F.; Inui, T.; Takeuchi, T. The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J. Biol. Chem., 2007, 282(36), 26562-26574.
[http://dx.doi.org/10.1074/jbc.M704199200] [PMID: 17613523]
[11]
Nakajima, H.; Amano, W.; Kubo, T.; Fukuhara, A.; Ihara, H.; Azuma, Y-T.; Tajima, H.; Inui, T.; Sawa, A.; Takeuchi, T. Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death. J. Biol. Chem., 2009, 284(49), 34331-34341.
[http://dx.doi.org/10.1074/jbc.M109.027698] [PMID: 19837666]
[12]
Meyer-Siegler, K.; Mauro, D.J.; Seal, G.; Wurzer, J.; deRiel, J.K.; Sirover, M.A. A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA, 1991, 88(19), 8460-8464.
[http://dx.doi.org/10.1073/pnas.88.19.8460] [PMID: 1924305]
[13]
Singh, R.; Green, M.R. Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science, 1993, 259(5093), 365-368.
[http://dx.doi.org/10.1126/science.8420004] [PMID: 8420004]
[14]
Glaser, P.E.; Gross, R.W. Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry, 1995, 34(38), 12193-12203.
[http://dx.doi.org/10.1021/bi00038a013] [PMID: 7547960]
[15]
Hara, M.R.; Agrawal, N.; Kim, S.F.; Cascio, M.B.; Fujimuro, M.; Ozeki, Y.; Takahashi, M.; Cheah, J.H.; Tankou, S.K.; Hester, L.D.; Ferris, C.D.; Hayward, S.D.; Snyder, S.H.; Sawa, A. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol., 2005, 7(7), 665-674.
[http://dx.doi.org/10.1038/ncb1268] [PMID: 15951807]
[16]
Ishitani, R.; Chuang, D.M. Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9937-9941.
[http://dx.doi.org/10.1073/pnas.93.18.9937] [PMID: 8790435]
[17]
Saunders, P.A.; Chalecka-Franaszek, E.; Chuang, D.M. Subcellular distribution of glyceraldehyde-3-phosphate dehydrogenase in cerebellar granule cells undergoing cytosine arabinoside-induced apoptosis. J. Neurochem., 1997, 69(5), 1820-1828.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69051820.x] [PMID: 9349524]
[18]
Sawa, A.; Khan, A.A.; Hester, L.D.; Snyder, S.H. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc. Natl. Acad. Sci. USA, 1997, 94(21), 11669-11674.
[http://dx.doi.org/10.1073/pnas.94.21.11669] [PMID: 9326668]
[19]
Sirover, M.A. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta, 1999, 1432(2), 159-184.
[http://dx.doi.org/10.1016/S0167-4838(99)00119-3] [PMID: 10407139]
[20]
Sirover, M.A. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J. Cell. Biochem., 2005, 95(1), 45-52.
[http://dx.doi.org/10.1002/jcb.20399] [PMID: 15770658]
[21]
Hara, M.R.; Snyder, S.H. Nitric oxide-GAPDH-Siah: a novel cell death cascade. Cell. Mol. Neurobiol., 2006, 26(4-6), 527-538.
[http://dx.doi.org/10.1007/s10571-006-9011-6] [PMID: 16633896]
[22]
Ishitani, R.; Tanaka, M.; Sunaga, K.; Katsube, N.; Chuang, D.M. Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol. Pharmacol., 1998, 53(4), 701-707.
[http://dx.doi.org/10.1124/mol.53.4.701] [PMID: 9547361]
[23]
Arutyunova, E.I.; Domnina, L.V.; Chudinova, A.A.; Makshakova, O.N.; Arutyunov, D.Y.; Muronetz, V.I. Localization of non-native D-glyceraldehyde-3-phosphate dehydrogenase in growing and apoptotic HeLa cells. Biochemistry (Mosc.), 2013, 78(1), 91-95.
[http://dx.doi.org/10.1134/S0006297913010112] [PMID: 23379564]
[24]
Nagy, E.; Rigby, W.F. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J. Biol. Chem., 1995, 270(6), 2755-2763.
[http://dx.doi.org/10.1074/jbc.270.6.2755] [PMID: 7531693]
[25]
Backlund, M.; Paukku, K.; Daviet, L.; De Boer, R.A.; Valo, E.; Hautaniemi, S.; Kalkkinen, N.; Ehsan, A.; Kontula, K.K.; Lehtonen, J.Y. Posttranscriptional regulation of angiotensin II type 1 receptor expression by glyceraldehyde 3-phosphate dehydrogenase. Nucleic Acids Res., 2009, 37(7), 2346-2358.
[http://dx.doi.org/10.1093/nar/gkp098] [PMID: 19246543]
[26]
White, M.R.; Khan, M.M.; Deredge, D.; Ross, C.R.; Quintyn, R.; Zucconi, B.E.; Wysocki, V.H.; Wintrode, P.L.; Wilson, G.M.; Garcin, E.D. A dimer interface mutation in glyceraldehyde-3-phosphate dehydrogenase regulates its binding to AU-rich RNA. J. Biol. Chem., 2015, 290(3), 1770-1785.
[http://dx.doi.org/10.1074/jbc.M114.618165] [PMID: 25451934]
[27]
Barinova, K.; Khomyakova, E.; Semenyuk, P.; Schmalhausen, E.; Muronetz, V. Binding of alpha-synuclein to partially oxidized glyceraldehyde-3-phosphate dehydrogenase induces subsequent inactivation of the enzyme. Arch. Biochem. Biophys., 2018, 642, 10-22.
[http://dx.doi.org/10.1016/j.abb.2018.02.002] [PMID: 29408361]
[28]
Guzhova, I.V.; Lazarev, V.F.; Kaznacheeva, A.V.; Ippolitova, M.V.; Muronetz, V.I.; Kinev, A.V.; Margulis, B.A. Novel mechanism of Hsp70 chaperone-mediated prevention of polyglutamine aggregates in a cellular model of huntington disease. Hum. Mol. Genet., 2011, 20(20), 3953-3963.
[http://dx.doi.org/10.1093/hmg/ddr314] [PMID: 21775503]
[29]
Naletova, I.; Schmalhausen, E.; Kharitonov, A.; Katrukha, A.; Saso, L.; Caprioli, A.; Muronetz, V. Non-native glyceraldehyde-3-phosphate dehydrogenase can be an intrinsic component of amyloid structures. Biochim. Biophys. Acta, 2008, 1784(12), 2052-2058.
[http://dx.doi.org/10.1016/j.bbapap.2008.07.013] [PMID: 18725330]
[30]
Little, C.; O’Brien, P.J. Mechanism of peroxide-inactivation of the sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem., 1969, 10(3), 533-538.
[http://dx.doi.org/10.1111/j.1432-1033.1969.tb00721.x] [PMID: 5348077]
[31]
Cremers, C.M.; Jakob, U. Oxidant sensing by reversible disulfide bond formation. J. Biol. Chem., 2013, 288(37), 26489-26496.
[http://dx.doi.org/10.1074/jbc.R113.462929] [PMID: 23861395]
[32]
Biteau, B.; Labarre, J.; Toledano, M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature, 2003, 425(6961), 980-984.
[http://dx.doi.org/10.1038/nature02075] [PMID: 14586471]
[33]
Woo, H.A.; Jeong, W.; Chang, T-S.; Park, K.J.; Park, S.J.; Yang, J.S.; Rhee, S.G. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J. Biol. Chem., 2005, 280(5), 3125-3128.
[http://dx.doi.org/10.1074/jbc.C400496200] [PMID: 15590625]
[34]
Chang, T-S.; Jeong, W.; Woo, H.A.; Lee, S.M.; Park, S.; Rhee, S.G. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem., 2004, 279(49), 50994-51001.
[http://dx.doi.org/10.1074/jbc.M409482200] [PMID: 15448164]
[35]
You K-S, ; Benitez, L.V.; McConachie, W.A.; Allison, W.S. The conversion of glyceraldehyde-3-phosphate dehydrogenase to an acylphosphatase by trinitroglycerin and inactivation of this activity by azide and ascorbate. Biochim. Biophys. Acta, 1975, 384(2), 317-330.
[http://dx.doi.org/10.1016/0005-2744(75)90033-9] [PMID: 235996]
[36]
Poole, L.B.; Karplus, P.A.; Claiborne, A. Protein sulfenic acids in redox signaling. Annu. Rev. Pharmacol. Toxicol., 2004, 44, 325-347.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121735] [PMID: 14744249]
[37]
Barinova, K.V.; Serebryakova, M.V.; Muronetz, V.I.; Schmalhausen, E.V. S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150-C154 intrasubunit disulfide bond in the active site of the enzyme. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(12), 3167-3177.
[http://dx.doi.org/10.1016/j.bbagen.2017.09.008] [PMID: 28935607]
[38]
Parker, D.J.; Allison, W.S. The mechanism of inactivation of glyceraldehyde 3-phosphate dehydrogenase by tetrathionate, o-iodosobenzoate, and iodine monochloride. J. Biol. Chem., 1969, 244(1), 180-189.
[PMID: 5773281]
[39]
Ehring, R.; Colowick, S.P. The two-step formation and inactivation of acylphosphatase by agents acting on glyceraldehyde phosphate dehydrogenase. J. Biol. Chem., 1969, 244(17), 4589-4599.
[PMID: 4309146]
[40]
Schmalhausen, E.V.; Muronetz, V.I.; Nagradova, N.K. Rabbit muscle GAPDH: non-phosphorylating dehydrogenase activity induced by hydrogen peroxide. FEBS Lett., 1997, 414(2), 247-252.
[http://dx.doi.org/10.1016/S0014-5793(97)01044-2] [PMID: 9315695]
[41]
Danshina, P.V.; Schmalhausen, E.V.; Avetisyan, A.V.; Muronetz, V.I. Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis. IUBMB Life, 2001, 51(5), 309-314.
[http://dx.doi.org/10.1080/152165401317190824] [PMID: 11699877]
[42]
Schuppe-Koistinen, I.; Moldéus, P.; Bergman, T.; Cotgreave, I.A. S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur. J. Biochem., 1994, 221(3), 1033-1037.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18821.x] [PMID: 8181459]
[43]
Gao, X-H.; Bedhomme, M.; Veyel, D.; Zaffagnini, M.; Lemaire, S.D. Methods for analysis of protein glutathionylation and their application to photosynthetic organisms. Mol. Plant, 2009, 2(2), 218-235.
[http://dx.doi.org/10.1093/mp/ssn072] [PMID: 19825609]
[44]
Newman, S.F.; Sultana, R.; Perluigi, M.; Coccia, R.; Cai, J.; Pierce, W.M.; Klein, J.B.; Turner, D.M.; Butterfield, D.A. An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J. Neurosci. Res., 2007, 85(7), 1506-1514.
[http://dx.doi.org/10.1002/jnr.21275] [PMID: 17387692]
[45]
Bedhomme, M.; Adamo, M.; Marchand, C.H.; Couturier, J.; Rouhier, N.; Lemaire, S.D.; Zaffagnini, M.; Trost, P. Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro. Biochem. J., 2012, 445(3), 337-347.
[http://dx.doi.org/10.1042/BJ20120505] [PMID: 22607208]
[46]
Leichert, L.I.; Gehrke, F.; Gudiseva, H.V.; Blackwell, T.; Ilbert, M.; Walker, A.K.; Strahler, J.R.; Andrews, P.C.; Jakob, U. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105(24), 8197-8202.
[http://dx.doi.org/10.1073/pnas.0707723105] [PMID: 18287020]
[47]
Roos, G.; Messens, J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med., 2011, 51(2), 314-326.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.031] [PMID: 21605662]
[48]
Hogg, N. The biochemistry and physiology of S-nitrosothiols. Annu. Rev. Pharmacol. Toxicol., 2002, 42, 585-600.
[http://dx.doi.org/10.1146/annurev.pharmtox.42.092501.104328] [PMID: 11807184]
[49]
Giustarini, D.; Milzani, A.; Aldini, G.; Carini, M.; Rossi, R.; Dalle-Donne, I. S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione. Antioxid. Redox Signal., 2005, 7(7-8), 930-939.
[http://dx.doi.org/10.1089/ars.2005.7.930] [PMID: 15998248]
[50]
Hildebrandt, T.; Knuesting, J.; Berndt, C.; Morgan, B.; Scheibe, R. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol. Chem., 2015, 396(5), 523-537.
[http://dx.doi.org/10.1515/hsz-2014-0295] [PMID: 25581756]
[51]
Ralser, M.; Wamelink, M.M.; Kowald, A.; Gerisch, B.; Heeren, G.; Struys, E.A.; Klipp, E.; Jakobs, C.; Breitenbach, M.; Lehrach, H.; Krobitsch, S. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol., 2007, 6(4), 10.
[http://dx.doi.org/10.1186/jbiol61] [PMID: 18154684]
[52]
Sirover, M.A. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim. Biophys. Acta, 2011, 1810(8), 741-751.
[http://dx.doi.org/10.1016/j.bbagen.2011.05.010] [PMID: 21640161]
[53]
Rodríguez-Pascual, F.; Redondo-Horcajo, M.; Magán-Marchal, N.; Lagares, D.; Martínez-Ruiz, A.; Kleinert, H.; Lamas, S. Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol. Cell. Biol., 2008, 28(23), 7139-7155.
[http://dx.doi.org/10.1128/MCB.01145-08] [PMID: 18809573]
[54]
Hara, M.R.; Cascio, M.B.; Sawa, A. GAPDH as a sensor of NO stress. Biochim. Biophys. Acta, 2006, 1762(5), 502-509.
[http://dx.doi.org/10.1016/j.bbadis.2006.01.012] [PMID: 16574384]
[55]
Nakamura, T.; Prikhodko, O.A.; Pirie, E.; Nagar, S.; Akhtar, M.W.; Oh, C-K.; McKercher, S.R.; Ambasudhan, R.; Okamoto, S.; Lipton, S.A. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol. Dis., 2015, 84, 99-108.
[http://dx.doi.org/10.1016/j.nbd.2015.03.017] [PMID: 25796565]
[56]
Zahid, S.; Khan, R.; Oellerich, M.; Ahmed, N.; Asif, A.R. Differential S-nitrosylation of proteins in Alzheimer’s disease. Neuroscience, 2014, 256, 126-136.
[http://dx.doi.org/10.1016/j.neuroscience.2013.10.026] [PMID: 24157928]
[57]
Yang, Y.; Loscalzo, J. S-nitrosoprotein formation and localization in endothelial cells. Proc. Natl. Acad. Sci. USA, 2005, 102(1), 117-122.
[http://dx.doi.org/10.1073/pnas.0405989102] [PMID: 15618409]
[58]
Wang, J.; Wang, Y.; Lv, Q.; Wang, L.; Du, J.; Bao, F.; He, Y-K. Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phosphate dehydrogenase. Biochem. Biophys. Res. Commun., 2017, 488(1), 88-94.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.012] [PMID: 28478036]
[59]
Zaffagnini, M.; Morisse, S.; Bedhomme, M.; Marchand, C.H.; Festa, M.; Rouhier, N.; Lemaire, S.D.; Trost, P. Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. J. Biol. Chem., 2013, 288(31), 22777-22789.
[http://dx.doi.org/10.1074/jbc.M113.475467] [PMID: 23749990]
[60]
Huang, B.; Chen, C. An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic. Biol. Med., 2006, 41(4), 562-567.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.03.006] [PMID: 16863989]
[61]
Reisz, J.A.; Bechtold, E.; King, S.B.; Poole, L.B.; Furdui, C.M. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J., 2013, 280(23), 6150-6161.
[http://dx.doi.org/10.1111/febs.12535] [PMID: 24103186]
[62]
Nakamura, T.; Lipton, S.A. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol. Sci., 2016, 37(1), 73-84.
[http://dx.doi.org/10.1016/j.tips.2015.10.002] [PMID: 26707925]
[63]
Shen, B.; English, A.M. Mass spectrometric analysis of nitroxyl-mediated protein modification: comparison of products formed with free and protein-based cysteines. Biochemistry, 2005, 44(42), 14030-14044.
[http://dx.doi.org/10.1021/bi0507478] [PMID: 16229492]
[64]
Yap, L-P.; Garcia, J.V.; Han, D.S.; Cadenas, E. Role of nitric oxide-mediated glutathionylation in neuronal function: potential regulation of energy utilization. Biochem. J., 2010, 428(1), 85-93.
[http://dx.doi.org/10.1042/BJ20100164] [PMID: 20210787]
[65]
Tan, A.L.Y.; Forbes, J.M.; Cooper, M.E. AGE, RAGE, and ROS in diabetic nephropathy. Semin. Nephrol., 2007, 27(2), 130-143.
[http://dx.doi.org/10.1016/j.semnephrol.2007.01.006] [PMID: 17418682]
[66]
Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis., 2018, 9(2), 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[67]
Chang, T.; Wu, L. Methylglyoxal, oxidative stress, and hypertension. Can. J. Physiol. Pharmacol., 2006, 84(12), 1229-1238.
[http://dx.doi.org/10.1139/y06-077] [PMID: 17487230]
[68]
Zephy, D.; Ahmad, J. Type 2 diabetes mellitus: Role of melatonin and oxidative stress. Diabetes Metab. Syndr., 2015, 9(2), 127-131.
[http://dx.doi.org/10.1016/j.dsx.2014.09.018] [PMID: 25450812]
[69]
Yan, L-J. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J. Diabetes Res., 2014, 2014137919
[http://dx.doi.org/10.1155/2014/137919] [PMID: 25019091]
[70]
Zhao, W.; Devamanoharan, P.S.; Varma, S.D. Fructose induced deactivation of antioxidant enzymes: preventive effect of pyruvate. Free Radic. Res., 2000, 33(1), 23-30.
[http://dx.doi.org/10.1080/10715760000300581] [PMID: 10826918]
[71]
Hartl, F.U.; Martin, J. Molecular chaperones in cellular protein folding. Curr. Opin. Struct. Biol., 1995, 5(1), 92-102.
[http://dx.doi.org/10.1016/0959-440X(95)80014-R] [PMID: 7773752]
[72]
Beissinger, M.; Buchner, J. How chaperones fold proteins. Biol. Chem., 1998, 379(3), 245-259.
[PMID: 9563819]
[73]
Lackie, R.E.; Maciejewski, A.; Ostapchenko, V.G.; Marques-Lopes, J.; Choy, W-Y.; Duennwald, M.L.; Prado, V.F.; Prado, M.A.M. The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front. Neurosci., 2017, 11, 254.
[http://dx.doi.org/10.3389/fnins.2017.00254] [PMID: 28559789]
[74]
Stroylova, Y.Y.; Kiselev, G.G.; Schmalhausen, E.V.; Muronetz, V.I. Prions and chaperones: friends or foes? Biochemistry (Mosc.), 2014, 79(8), 761-775.
[http://dx.doi.org/10.1134/S0006297914080045] [PMID: 25365486]
[75]
Polyakova, O.V.; Roitel, O.; Asryants, R.A.; Poliakov, A.A.; Branlant, G.; Muronetz, V.I. Misfolded forms of glyceraldehyde-3-phosphate dehydrogenase interact with GroEL and inhibit chaperonin-assisted folding of the wild-type enzyme. Protein Sci., 2005, 14(4), 921-928.
[http://dx.doi.org/10.1110/ps.041211205] [PMID: 15741339]
[76]
Naletova, I.N.; Muronetz, V.I.; Schmalhausen, E.V. Unfolded, oxidized, and thermoinactivated forms of glyceraldehyde-3-phosphate dehydrogenase interact with the chaperonin GroEL in different ways. Biochim. Biophys. Acta, 2006, 1764(4), 831-838.
[http://dx.doi.org/10.1016/j.bbapap.2006.02.002] [PMID: 16551514]
[77]
Kiselev, G.G.; Naletova, I.N.; Sheval, E.V.; Stroylova, Y.Y.; Schmalhausen, E.V.; Haertlé, T.; Muronetz, V.I. Chaperonins induce an amyloid-like transformation of ovine prion protein: the fundamental difference in action between eukaryotic TRiC and bacterial GroEL. Biochim. Biophys. Acta, 2011, 1814(12), 1730-1738.
[http://dx.doi.org/10.1016/j.bbapap.2011.08.006] [PMID: 21856455]
[78]
Itakura, M.; Nakajima, H.; Kubo, T.; Semi, Y.; Kume, S.; Higashida, S.; Kaneshige, A.; Kuwamura, M.; Harada, N.; Kita, A.; Azuma, Y.T.; Yamaji, R.; Inui, T.; Takeuchi, T. Glyceraldehyde-3-phosphate dehydrogenase aggregates accelerate amyloid-β amyloidogenesis in Alzheimer disease. J. Biol. Chem., 2015, 290(43), 26072-26087.
[http://dx.doi.org/10.1074/jbc.M115.669291] [PMID: 26359500]
[79]
Cumming, R.C.; Schubert, D. Amyloid-beta induces disulfide bonding and aggregation of GAPDH in Alzheimer’s disease. FASEB J., 2005, 19(14), 2060-2062.
[http://dx.doi.org/10.1096/fj.05-4195fje] [PMID: 16186172]
[80]
Shalova, I.N.; Cechalova, K.; Rehakova, Z.; Dimitrova, P.; Ognibene, E.; Caprioli, A.; Schmalhausen, E.V.; Muronetz, V.I.; Saso, L. Decrease of dehydrogenase activity of cerebral glyceraldehyde-3-phosphate dehydrogenase in different animal models of Alzheimer’s disease. Biochim. Biophys. Acta, 2007, 1770(5), 826-832.
[http://dx.doi.org/10.1016/j.bbagen.2007.01.014] [PMID: 17324518]
[81]
Tatton, N.A. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp. Neurol., 2000, 166(1), 29-43.
[http://dx.doi.org/10.1006/exnr.2000.7489] [PMID: 11031081]
[82]
Tsuchiya, K.; Tajima, H.; Kuwae, T.; Takeshima, T.; Nakano, T.; Tanaka, M.; Sunaga, K.; Fukuhara, Y.; Nakashima, K.; Ohama, E.; Mochizuki, H.; Mizuno, Y.; Katsube, N.; Ishitani, R. Pro-apoptotic protein glyceraldehyde-3-phosphate dehydrogenase promotes the formation of Lewy body-like inclusions. Eur. J. Neurosci., 2005, 21(2), 317-326.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03870.x] [PMID: 15673432]
[83]
Lazarev, V.F.; Benken, K.A.; Semenyuk, P.I.; Sarantseva, S.V.; Bolshakova, O.I.; Mikhaylova, E.R.; Muronetz, V.I.; Guzhova, I.V.; Margulis, B.A. GAPDH binders as potential drugs for the therapy of polyglutamine diseases: design of a new screening assay. FEBS Lett., 2015, 589(5), 581-587.
[http://dx.doi.org/10.1016/j.febslet.2015.01.018] [PMID: 25625921]
[84]
Butterfield, D.A.; Hardas, S.S.; Lange, M.L.B. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J. Alzheimers Dis., 2010, 20(2), 369-393.
[http://dx.doi.org/10.3233/JAD-2010-1375] [PMID: 20164570]
[85]
Gómez, A.; Ferrer, I. Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseases. J. Neurosci. Res., 2009, 87(4), 1002-1013.
[http://dx.doi.org/10.1002/jnr.21904] [PMID: 18855937]
[86]
Savreux-Lenglet, G.; Depauw, S.; David-Cordonnier, M.H. Protein recognition in drug-induced DNA alkylation: when the moonlight protein GAPDH meets S23906-1/DNA minor groove adducts. Int. J. Mol. Sci., 2015, 16(11), 26555-26581.
[http://dx.doi.org/10.3390/ijms161125971] [PMID: 26556350]
[87]
White, M.R.; Garcin, E.D. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein. Wiley Interdiscip. Rev. RNA, 2016, 7(1), 53-70.
[http://dx.doi.org/10.1002/wrna.1315] [PMID: 26564736]
[88]
Ronai, Z. Glycolytic enzymes as DNA binding proteins. Int. J. Biochem., 1993, 25(7), 1073-1076.
[http://dx.doi.org/10.1016/0020-711X(93)90123-V] [PMID: 8365548]
[89]
Nagy, E.; Henics, T.; Eckert, M.; Miseta, A.; Lightowlers, R.N.; Kellermayer, M. Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem. Biophys. Res. Commun., 2000, 275(2), 253-260.
[http://dx.doi.org/10.1006/bbrc.2000.3246] [PMID: 10964654]
[90]
Ryazanov, A.G. Glyceraldehyde-3-phosphate dehydrogenase is one of the three major RNA-binding proteins of rabbit reticulocytes. FEBS Lett., 1985, 192(1), 131-134.
[http://dx.doi.org/10.1016/0014-5793(85)80058-2] [PMID: 2414129]
[91]
Ryazanov, A.G.; Ashmarina, L.I.; Muronetz, V.I. Association of glyceraldehyde-3-phosphate dehydrogenase with mono- and polyribosomes of rabbit reticulocytes. Eur. J. Biochem., 1988, 171(1-2), 301-305.
[http://dx.doi.org/10.1111/j.1432-1033.1988.tb13790.x] [PMID: 3276518]
[92]
Arutyunova, E.I.; Danshina, P.V.; Domnina, L.V.; Pleten, A.P.; Muronetz, V.I. Oxidation of glyceraldehyde-3-phosphate dehydrogenase enhances its binding to nucleic acids. Biochem. Biophys. Res. Commun., 2003, 307(3), 547-552.
[http://dx.doi.org/10.1016/S0006-291X(03)01222-1] [PMID: 12893257]
[93]
Sunaga, K.; Takahashi, H.; Chuang, D.M.; Ishitani, R. Glyceraldehyde-3-phosphate dehydrogenase is over-expressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer’s brain. Neurosci. Lett., 1995, 200(2), 133-136.
[http://dx.doi.org/10.1016/0304-3940(95)12098-O] [PMID: 8614562]
[94]
Sirover, M.A. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J. Cell. Biochem., 1997, 66(2), 133-140.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19970801)66:2<133:AID-JCB1>3.0.CO;2-R] [PMID: 9213215]
[95]
Tatton, W.G.; Chalmers-Redman, R.M.; Elstner, M.; Leesch, W.; Jagodzinski, F.B.; Stupak, D.P.; Sugrue, M.M.; Tatton, N.A. Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J. Neural Transm. Suppl., 2000, (60), 77-100.
[http://dx.doi.org/10.1007/978-3-7091-6301-6_5] [PMID: 11205159]
[96]
Brown, G.C. Nitric oxide and neuronal death. Nitric Oxide, 2010, 23(3), 153-165.
[http://dx.doi.org/10.1016/j.niox.2010.06.001] [PMID: 20547235]
[97]
Bryksin, A.V.; Laktionov, P.P. Role of glyceraldehyde-3-phosphate dehydrogenase in vesicular transport from golgi apparatus to endoplasmic reticulum. Biochemistry (Mosc.), 2008, 73(6), 619-625.
[http://dx.doi.org/10.1134/S0006297908060011] [PMID: 18620527]
[98]
Sen, N.; Hara, M.R.; Kornberg, M.D.; Cascio, M.B.; Bae, B-I.; Shahani, N.; Thomas, B.; Dawson, T.M.; Dawson, V.L.; Snyder, S.H.; Sawa, A. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol., 2008, 10(7), 866-873.
[http://dx.doi.org/10.1038/ncb1747] [PMID: 18552833]
[99]
Tristan, C.; Shahani, N.; Sedlak, T.W.; Sawa, A. The diverse functions of GAPDH: views from different subcellular compartments. Cell. Signal., 2011, 23(2), 317-323.
[http://dx.doi.org/10.1016/j.cellsig.2010.08.003] [PMID: 20727968]
[100]
Tristan, C.A.; Ramos, A.; Shahani, N.; Emiliani, F.E.; Nakajima, H.; Noeh, C.C.; Kato, Y.; Takeuchi, T.; Noguchi, T.; Kadowaki, H.; Sedlak, T.W.; Ishizuka, K.; Ichijo, H.; Sawa, A. Role of apoptosis signal-regulating kinase 1 (ASK1) as an activator of the GAPDH-Siah1 stress-signaling cascade. J. Biol. Chem., 2015, 290(1), 56-64.
[http://dx.doi.org/10.1074/jbc.M114.596205] [PMID: 25391652]
[101]
Sevostyanova, I.A.; Kulikova, K.V.; Kuravsky, M.L.; Schmalhausen, E.V.; Muronetz, V.I. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is expressed in melanoma cells. Biochem. Biophys. Res. Commun., 2012, 427(3), 649-653.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.115] [PMID: 23026046]
[102]
Miki, K.; Qu, W.; Goulding, E.H.; Willis, W.D.; Bunch, D.O.; Strader, L.F.; Perreault, S.D.; Eddy, E.M.; O’Brien, D.A. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl. Acad. Sci. USA, 2004, 101(47), 16501-16506.
[http://dx.doi.org/10.1073/pnas.0407708101] [PMID: 15546993]
[103]
Muronetz, V.I.; Kuravsky, M.L.; Barinova, K.V.; Schmalhausen, E.V. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase - an evolutionary acquisition of mammals. Biochemistry (Mosc.), 2015, 80(13), 1672-1689.
[http://dx.doi.org/10.1134/S0006297915130040] [PMID: 26878573]
[104]
Kuravsky, M.L.; Aleshin, V.V.; Frishman, D.; Muronetz, V.I. Testis-specific glyceraldehyde-3-phosphate dehydrogenase: origin and evolution. BMC Evol. Biol., 2011, 11, 160.
[http://dx.doi.org/10.1186/1471-2148-11-160] [PMID: 21663662]
[105]
Elkina, Y.L.; Kuravsky, M.L.; El’darov, M.A.; Stogov, S.V.; Muronetz, V.I.; Schmalhausen, E.V. Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase: structural basis for enhanced stability. Biochim. Biophys. Acta, 2010, 1804(12), 2207-2212.
[http://dx.doi.org/10.1016/j.bbapap.2010.09.002] [PMID: 20833277]
[106]
Kuravsky, M.; Barinova, K.; Marakhovskaya, A.; Eldarov, M.; Semenyuk, P.; Muronetz, V.; Schmalhausen, E. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is stabilized by additional proline residues and an interdomain salt bridge. Biochim. Biophys. Acta, 2014, 1844(10), 1820-1826.
[http://dx.doi.org/10.1016/j.bbapap.2014.07.018] [PMID: 25091199]
[107]
Kuravsky, M.L.; Barinova, K.V.; Asryants, R.A.; Schmalhausen, E.V.; Muronetz, V.I. Structural basis for the NAD binding cooperativity and catalytic characteristics of sperm-specific glyceraldehyde-3-phosphate dehydrogenase. Biochimie, 2015, 115, 28-34.
[http://dx.doi.org/10.1016/j.biochi.2015.04.016] [PMID: 25936797]
[108]
Shchutskaya, Y.Y.; Elkina, Y.L.; Kuravsky, M.L.; Bragina, E.E.; Schmalhausen, E.V. Investigation of glyceraldehyde-3-phosphate dehydrogenase from human sperms. Biochemistry (Mosc.), 2008, 73(2), 185-191.
[http://dx.doi.org/10.1134/S0006297908020107] [PMID: 18298375]
[109]
Elkina, Y.L.; Atroshchenko, M.M.; Bragina, E.E.; Muronetz, V.I.; Schmalhausen, E.V. Oxidation of glyceraldehyde-3-phosphate dehydrogenase decreases sperm motility. Biochemistry (Mosc.), 2011, 76(2), 268-272.
[http://dx.doi.org/10.1134/S0006297911020143] [PMID: 21568861]
[110]
Evdokimov, V.V.; Barinova, K.V.; Turovetskii, V.B.; Muronetz, V.I.; Schmalhausen, E.V. Low concentrations of hydrogen peroxide activate the antioxidant defense system in human sperm cells. Biochemistry (Mosc.), 2015, 80(9), 1178-1185.
[http://dx.doi.org/10.1134/S0006297915090084] [PMID: 26555470]
[111]
Kouwen, T.R.H.M.; Andréll, J.; Schrijver, R.; Dubois, J-Y.F.; Maher, M.J.; Iwata, S.; Carpenter, E.P.; van Dijl, J.M. Thioredoxin A active-site mutants form mixed disulfide dimers that resemble enzyme-substrate reaction intermediates. J. Mol. Biol., 2008, 379(3), 520-534.
[http://dx.doi.org/10.1016/j.jmb.2008.03.077] [PMID: 18455736]
[112]
Sirover, M.A. Minireview. Emerging new functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. Life Sci., 1996, 58(25), 2271-2277.
[http://dx.doi.org/10.1016/0024-3205(96)00123-3] [PMID: 8649216]
[113]
Mazzola, J.L.; Sirover, M.A. Alteration of intracellular structure and function of glyceraldehyde-3-phosphate dehydrogenase: a common phenotype of neurodegenerative disorders? Neurotoxicology, 2002, 23(4-5), 603-609.
[http://dx.doi.org/10.1016/S0161-813X(02)00062-1] [PMID: 12428732]
[114]
Berry, M.D. Glyceraldehyde-3-phosphate dehydrogenase as a target for small-molecule disease-modifying therapies in human neurodegenerative disorders. J. Psychiatry Neurosci., 2004, 29(5), 337-345.
[PMID: 15486605]
[115]
Muronetz, V.I.; Barinova, K.V.; Stroylova, Y.Y.; Semenyuk, P.I.; Schmalhausen, E.V. Glyceraldehyde-3-phosphate dehydrogenase: Aggregation mechanisms and impact on amyloid neurodegenerative diseases. Int. J. Biol. Macromol., 2017, 100, 55-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.066] [PMID: 27215901]
[116]
Muronetz, V.I.; Melnikova, A.K.; Seferbekova, Z.N.; Barinova, K.V.; Schmalhausen, E.V. Glycation, glycolysis, and neurodegenerative diseases: is there any connection? Biochemistry (Mosc.), 2017, 82(8), 874-886.
[http://dx.doi.org/10.1134/S0006297917080028] [PMID: 28941455]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy