[1]
Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnology, 2016, 14, 73-93.
[2]
Trueba, M.; Trasatti, S.P. γ-Alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem., 2005, 2005(17), 3393-3403.
[3]
Palkar, V. Sol-gel derived nanostructured γ -alumina porous spheres as an adsorbent in liquid chromatography. Nanostruct. Mater., 1999, 11(3), 369-374.
[4]
Amini, G.; Najafpour, G.D.; Rabiee, S.M.; Ghoreyshi, A.A. Synthesis and characterization of amorphous nano‐alumina powders with high surface area for biodiesel production. Chem. Eng. Technol., 2013, 36(10), 1708-1712.
[5]
Mimani, T. Fire synthesis. Resonance, 2000, 5, 50-57.
[6]
De Aza, A.H.; Chevalier, J.; Fantozzi, G.; Schehl, M.; Torrecillas, R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomater, 2002, 23(3), 937-945.
[7]
Thorat, S.B.; Diaspro, A.; Salerno, M. In vitro investigation of coupling-agent-free dental restorative composite based on nano-porous alumina fillers. J. Dent., 2014, 42(3), 279-286.
[8]
Qi, W.; Zhe, L.; Yi, Y.; Jiandong, W. The effect of micro and nano alumina on the ability of impedance on the electrical tree of epoxy resin; Transact. China Electrotech. Soc, 2015, p. 6.
[9]
Wang, Y.; Santos, A.; Kaur, G.; Evdokiou, A.; Losic, D. Structurally engineered anodic alumina nanotubes as nano-carriers for delivery of anticancer therapeutics. Biomater, 2014, 35(21), 5517-5526.
[10]
Rozita, Y.; Brydson, R.; Comyn, T.P.; Scott, A.J.; Hammond, C.; Brown, A.; Chauruka, S.; Hassanpour, A.; Young, N.P.; Kirkland, A.I.; Sawada, H.; Smith, R.I. A study of commercial nanoparticulate γ-Al2O3 catalyst supports. ChemCatChem, 2013, 5, 1-13.
[11]
Bodaghi, M.; Mirhabibi, A.R.; Zolfonun, H.; Tahriri, M.; Karimi, M. Investigation of phase transition of γ-alumina to α-alumina via mechanical milling method. Phase Transit., 2008, 81, 571-580.
[12]
Parida, K.M.; Pradhan, A.C.; Das, J.; Sahu, N. Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Mater. Chem. Phys., 2009, 113(1), 244-248.
[13]
Razavi Hesabi, Z.; Hafizpour, H.R.; Simchi, A. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Mater. Sci. Eng. A, 2007, 454-455, 89-98.
[14]
Tok, A.I.Y.; Boey, F.Y.C.; Zhao, X.L. Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. J. Mater. Process. Technol., 2006, 178(1-3), 270-273.
[15]
Natali, M.; Carta, G.; Rigato, V.; Rossetto, G.; Salmaso, G.; Zanella, P. Chemical, morphological and nano-mechanical characterizations of Al2O3 thin films deposited by metal organic chemical vapour deposition on AISI 304 stainless steel. Electrochim. Acta, 2005, 50(23), 4615-4620.
[16]
Tiwari, S.; Sahu, R.K.; Pramanick, A.; Singh, R. Development of conversion coating on mild steel prior to sol gel nanostructured Al2O3 coating for enhancement of corrosion resistance. Surf. Coat. Tech., 2011, 205(21), 4960-4967.
[17]
Fu, Q.; Cao, C.B.; Zhu, H.S. Preparation of alumina films from a new sol-gel route. Thin Solid Films, 1999, 348(1), 99-102.
[18]
Rivera, T.; Sosa, R.; Azorin, J.; Zarate, J.; Ceja, A. Synthesis and luminescent characterization of sol-gel derived zirconia-alumina. Radiat. Meas., 2010, 45(3), 465-467.
[19]
Toniolo, G.C.; Lima, M.D.; Takimi, A.C.; Bergmann, C.P. Synthesis of alumina powders by the glycine-nitrate combustion process. Mater. Res. Bull., 2005, 40, 561-571.
[20]
Rajaeiyan, A.; Bagheri-Mohagheghi, M. Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles. Adv. Manuf., 2013, 1, 176-182.
[21]
Patnaik, P. Handbook of Inorganic Chemicals; McGraw-Hill: New York, 2002.
[23]
Elam, J.W. Atomic layer deposition applications 6. The electrochemical
Society: New Jersey , 2010.
[24]
Levin, I.; Brandon, D. Metastable alumina polymorphs: Crystal structures and transition sequences. J. Am. Ceram. Soc., 1998, 81(8), 1995-2012.
[25]
Xie, Y.; Kocaefe, D.; Kocaefe, Y.; Cheng, J.; Liu, W. The effect of novel synthetic methods and parameters control on morphology of nano-alumina particles. Nanoscale Res. Lett., 2016, 259, 1-11.
[26]
Greenwood, N.N.; Earnshaw, A. Chemistry of elements, 2nd ed; Butterworth and Heinemann: Oxford, 1997.
[28]
Digne, M.; Sautet, P.; Raybaud, P.; Toulhoat, H.; Artacho, E. Structure and stability of aluminum hydroxides: A theoretical study. J. Phys. Chem., 2002, 106(20), 5155-5162.
[29]
Hammond, C. The basics of crystallography and diffraction; Oxford Science Publications: Oxford, 2009.
[30]
Tanna, J.A.; Chaudhary, R.G.; Gandhare, N.V.; Juneja, H.D. Alumina nanoparticles: A new and reusable catalyst for synthesis of dihydropyrimidinones derivatives. Adv. Mater. Lett, 2016, 7(8), 100-150.
[31]
Kiasat, A.R.; Hemat-Alian, L.; Saghanezhad, S.J. Nano Al2O3: An efficient and recyclable nanocatalyst for the one-pot preparation of 1-amidoalkyl-2-naphthols under solvent-free conditions. Res. Chem. Intermed., 2016, 42(2), 915-922.
[32]
Akselsen, Ø.W.; Skattebøl, L.; Hansen, T.V. Ortho-formylation of oxygenated phenols. Tetrahedron Lett., 2009, 50, 6339-6341.
[33]
Kiasat, A.R.; Almasi, H.; Saghanezhad, S.J. One-pot synthesis of hantzsch esters and polyhydroquinoline derivatives catalyzed by γ-Al2O3-nanoparticles under solvent-free thermal conditions. Rev. Roum. Chim., 2014, 50(1), 61-66.
[34]
Nasr-Esfahani, M.; Abdizadeh, T. Preparation, characterization and use of vanadatesulfuric acid as a new and eco-benign nanocatalyst for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes under solvent-free conditions. Rev. Roum. Chim., 2013, 58, 27-35.
[35]
Sadiadi, S.; Shiri, S.; Hekmatshoar, R.; Beheshtiha, Y.S. Nanocrystalline aluminium oxide: A mild and efficient reusable catalyst for the one-pot synthesis of poly-substituted quinolones via Friedlander hetero-annulation. Monatsh. Chem., 2009, 140, 1343-1347.
[36]
Teimouri, A.; Salavati, H.; Chermahini, A.N. Synthesis, characterization and application of various types of alumina and nano-γ-alumina sulfuric acid for the synthesis of 2,5-isubstituted 1,3,4-oxadiazoles. Acta Chim. Slov., 2014, 61, 51-58.
[37]
Das, V.K.; Devi, R.R.; Raul, P.K.; Thakor, A.J. Nano rod-shaped and reusable basic Al2O3 catalyst for N-formylation of amines under solvent-free conditions: A novel, practical and convenient ‘NOSE’ approach. Green Chem., 2012, 14, 847-854.
[38]
Sadjad, S.; Rasouli, S. An efficient synthesis of imidazo[1,2-a]azine using nanocrystalline alumina powder. Int. J. Nano. Dim, 2011, 1(3), 177-186.
[39]
Shelke, P.D.; Rajbhoj, A.S.; Nimase, M.S.; Tikone, G.A.; Zaware, B.H.; Jadhav, S.S. An efficient, solvent free one pot synthesis of tetrasubstitued imidazoles catalyzed by nanocrystalline γ-alumina. Orient. J. Chem., 2016, 32(4), 2007-2014.
[40]
Reddy, B.P.; Vijayakumar, V.; Arasu, M.V.; Al-Dhabi, N.A. γ-Alumina nanoparticle catalyzed efficient synthesis of highly substituted imidazoles. Molecules, 2015, 20, 19221-19235.
[42]
Teimouri, A.; Ghorbanian, L.; Moatari, A. Application of various types of alumina and nano-γ-alumina sulfuric acid in the synthesis of α-aminonitriles derivatives: Comparative study. Bull. Chem. Soc. Ethiop., 2014, 28(3), 441-450.
[43]
Kiasat, A.R.; Nroozizadeh, S.; Saghanezhad, S.; Ghahremani, M. Experimental and theoretical study on one-pot, three-component route to 2H-indazolo[2,1-b]phthalazine-triones catalyzed by nano-alumina sulforic acid. J. Mol. Struct., 2013, 1036, 216-225.
[44]
Maleki, B.; Sedigh Ashrafi, S. Nano α-Al2O3 supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): Preparation, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives. RSC Advances, 2014, 4, 42873-42891.
[45]
Wu, L.; Yin, Z. Sulfonic acid functionalized nano γ-Al2O3 catalyzed per-O-acetylated of carbohydrates. Carbohydr. Res., 2013, 365, 14-19.
[46]
Davis, B.G. Synthesis of glycoproteins. Chem. Rev., 2002, 102, 579-601.
[47]
Dwek, R.A. Glycobiology: Toward understanding the function of sugars. Chem. Rev., 1996, 96, 683-720.
[48]
Yin, Z.; Zheng, B.; Ai, F. Sulfonic acid functionalized nano γ-Al2O3: A new, efficient, and reusable catalyst for synthesis of thioamides. Phosphorus Sulfur Silicon, 2013, 188, 1412-1420.
[49]
Sharghi, H.; Aberi, M.; Aboonajmi, J. One-pot synthesis of 2,4-disubstituted quinolines via three-component reaction of amines, aldehydes and alkynes using Al2O3 nanoparticles/methanesulfonic acid (nano-AMA) as a new catalyst. J. Chem. Iran. Soc, 2016, 13(12), 2229-2237.
[50]
Wu, L.Q. Nano N -propylsulfonated γ-Al2O3: A new, efficient and reusable catalyst for synthesis of spiro[indoline-3,4-pyrazolo[3,4-e][1,4]thiazepine]diones in aqueous media. Appl. Organomet. Chem., 2013, 27, 148-154.
[51]
Davod, F.; Kiasat, A.R.; Enjilzadeh, M. cheraghchi, M. One-pot synthesis of 14-aryl-14 H-dibenzo[a,j]xanthene derivatives catalyzed by nano-alumina sulfuric acid through solvent-free conditions. Lett. Org. Chem., 2013, 13, 58-66.
[52]
Neal, L.M.; Hagelin-Weaver, H.E. C–H activation and C–C coupling of 4-methylpyridine using palladium supported on nanoparticle alumina. J. Mol. Catal. A., 2008, 284, 144-148.