[1]
Downing, N.S.; Zhang, A.D.; Ross, J.S. Regulatory review of new therapeutic agents - FDA versus EMA, 2011-2015. N. Engl. J. Med., 2017, 376(14), 1386-1387.
[2]
Huang, L.C.; Wu, X.; Chen, J.Y. Predicting adverse side effects of drugs. BMC Genomics, 2011, 12(5), S11.
[3]
Kandoi, G.; Acencio, M.L.; Lemke, N. Prediction of druggable proteins using machine learning and systems biology: A mini-review. Front. Physiol., 2015, 6, 366.
[4]
Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med., 2001, 23(1), 89-109.
[5]
Jamali, A.A.; Ferdousi, R.; Razzaghi, S.; Li, J.; Safdari, R.; Ebrahimie, E. DrugMiner: Comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov. Today, 2016, 21(5), 718-724.
[6]
Lima, A.N.; Philot, E.A.; Trossini, G.H.; Scott, L.P.; Maltarollo, V.G.; Honorio, K.M. Use of machine learning approaches for novel drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 225-239.
[7]
Weaver, I.N.; Weaver, D.F. Drug design and discovery: Translational biomedical science varies among countries. Clin. Transl. Sci., 2013, 6(5), 409-413.
[8]
Reiss, T. Drug discovery of the future: The implications of the human genome project. Trends Biotechnol., 2001, 19(12), 496-499.
[9]
Costa, P.R.; Acencio, M.L. Lemke, N. A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data. BMC Genomics, 2010, 11(5), S9.
[10]
Griesenauer, R.H.; Kinch, M.S. 2016 in review: FDA approvals of new molecular entities. Drug Discov. Today, 2017, 22(11), 1593-1597.
[11]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Applications to targets and beyond. Br. J. Pharmacol., 2007, 152(1), 21-37.
[12]
Jamal, S.; Goyal, S.; Shanker, A. Grover A3 predicting neurological adverse drug reactions based on biological, chemical and phenotypic properties of drugs using machine learning models. Sci. Rep., 2017, 7(1), 872.
[13]
Lan, M.Y.; Yang, W.L.; Lin, K.T.; Lin, J.C.; Shann, Y.J.; Ho, C.Y.; Huang, C.Y. Using computational strategies to predict potential drugs for nasopharyngeal carcinoma. Head Neck, 2014, 36(10), 1398-1407.
[14]
Lavecchia, A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today, 2015, 20(3), 318-331.
[15]
Cosgun, E.; Limdi, N.A.; Duarte, C.W. High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans. Bioinformatics, 2011, 27(10), 1384-1389.
[16]
Larkins, N.; Matsell, D.G. Tacrolimus therapeutic drug monitoring and pediatric renal transplant graft outcomes. Pediatr. Transplant., 2014, 18(8), 803-809.
[17]
Lin, F.P.; Pokorny, A.; Teng, C.; Dear, R.; Epstein, R. Computational prediction of multidisciplinary team decision-making for adjuvant breast cancer drug therapies: A machine learning approach. BMC Cancer, 2016, 16(1), 929.
[18]
Yang, S.H.; Lee, M.G. Dose-independent pharmacokinetics of clindamycin after intravenous and oral administration to rats: Contribution of gastric first-pass effect to low bioavailability. Int. J. Pharm., 2007, 332(1-2), 17-23.
[19]
Kureshi, N.; Abidi, S.S. Blouin, C. A Predictive model for personalized therapeutic interventions in non-small cell lung cancer. IEEE J. Biomed. Health Inform., 2016, 20(1), 424-431.
[20]
Wallemacq, P.; Armstrong, V.W.; Brunet, M.; Haufroid, V.; Holt, D.W.; Johnston, A.; Kuypers, D.; Le Meur, Y.; Marquet, P.; Oellerich, M.; Thervet, E.; Toenshoff, B.; Undre, N.; Weber, L.T.; Westley, I.S.; Mourad, M. Opportunities to optimize tacrolimus therapy in solid organ transplantation: Report of the European consensus conference. Ther. Drug Monit., 2009, 31(2), 139-152.
[21]
Staatz, C.E.; Goodman, L.K.; Tett, S.E. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin. Pharmacokinet., 2010, 49(3), 141-175.
[22]
Finlayson, S.G.; Levy, M.; Reddy, S.; Rubin, D.L. Toward rapid learning in cancer treatment selection: An analytical engine for practice-based clinical data. J. Biomed. Inform., 2016, 60, 104-113.
[23]
Tan, M. Prediction of anti-cancer drug response by kernelized multi-task learning. Artif. Intell. Med., 2016, 73, 70-77.
[24]
Mani, S.; Chen, Y.; Li, X.; Arlinghaus, L.; Chakravarthy, A.B.; Abramson, V.; Bhave, S.R.; Levy, M.A.; Xu, H.; Yankeelov, T.E. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. J. Am. Med. Inform. Assoc., 2013, 20(4), 688-695.
[25]
Ma, Y.; Ding, Z.; Qian, Y.; Shi, X.; Castranova, V.; Harner, E.J.; Guo, L. Predicting cancer drug response by proteomic profiling. Clin. Cancer Res., 2006, 12(15), 4583-4589.
[26]
deAndres-Galiana, E.J.; Fernández-Martínez, J.L.; Luaces, O.; Del Coz, J.J.; Fernández, R.; Solano, J.; Nogués, E.A.; Zanabilli, Y.; Alonso, J.M.; Payer, A.R.; Vicente, J.M.; Medina, J.; Taboada, F.; Vargas, M.; Alarcón, C.; Morán, M.; González-Ordóñez, A.; Palicio, M.A.; Ortiz, S.; Chamorro, C.; Gonzalez, S.; González-Rodríguez, A.P. On the prediction of Hodgkin lymphoma treatment response. Clin. Transl. Oncol., 2015, 17(8), 612-619.
[27]
Dong, Z.; Naiqian, Z.; Chun, Li.; Haiyun, W.; Yun, F.; Jun, W.; Xiaoqi, Z. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. BMC Cancer, 2015, 15, 489.
[28]
Kim, J.W.; Sharma, V.; Ryan, N.D. Predicting methylphenidate response in ADHD using machine learning approaches. Int. J. Neuropsychopharmacol., 2015, 18(11), pyv052.
[29]
Nguyen, L.; Dang, C.C. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data. F1000Res, 2016, 5 doi: 10.12688/f1000research.10529.2
[30]
Jang, I.S.; Neto, E.C.; Guinney, J.; Friend, S.H.; Margolin, A.A. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac. Symp. Biocomput., 2014, 63-74.
[31]
Menden, M.P.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One, 2013, 8(4), e61318.
[32]
Colic, S.; Wither, R.G.; Lang, M.; Zhang, L.; Eubanks, J.H.; Bardakjian, B.L. Prediction of antiepileptic drug treatment outcomes using machine learning. J. Neural Eng., 2017, 14(1), 016002.
[33]
Forshed, J.; Pernemalm, M.; Tan, C.S.; Lindberg, M.; Kanter, L.; Pawitan, Y.; Lewensohn, R.; Stenke, L.; Lehtiö, J. Proteomic data analysis workflow for discovery of candidate biomarker peaks predictive of clinical outcome for patients with acute myeloid leukemia. J. Proteome Res., 2008, 7(6), 2332-2341.
[34]
Liu, M.; Wu, Y.; Chen, Y.; Sun, J.; Zhao, Z.; Chen, X.W.; Matheny, M.E.; Xu, H. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. J. Am. Med. Inform. Assoc., 2012, 19(e1), e28-e35.
[35]
Hammann, F.; Gutmann, H.; Vogt, N.; Helma, C.; Drewe, J. Prediction of adverse drug reactions using decision tree modeling. Clin. Pharmacol. Ther., 2010, 88(1), 52-59.
[36]
Liang, Z.; Jimmy, X.H.; Xing, Z.; Gang, Z. DL-ADR: A novel deep learning model for classifying genomic variants into adverse drug reactions. BMC Med. Genomics, 2016, 9(2), 48.
[37]
Raja, K.; Patrick, M.; Elder, J.T.; Tsoi, L.C. Machine learning workflow to enhance predictions of Adverse Drug Reactions (ADRs) through drug-gene interactions: Application to drugs for cutaneous diseases. Sci. Rep., 2017, 7(1), 3690.
[38]
Moon, H.; Cong, M. Predictive models of cytotoxicity as mediated by exposure to chemicals or drugs. SAR QSAR Environ. Res., 2016, 27(6), 455-468.
[39]
Huang, L.C. X. Wu.; Chen, J.Y. Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures. Proteomics, 2013, 13(2), 313-324.
[40]
Vidyasagar, M. Identifying predictive features in drug response using machine learning: Opportunities and challenges. Annu. Rev. Pharmacol. Toxicol., 2015, 55, 15-34.