[1]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-86.
[2]
Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet 2014; 384: 1376-88.
[3]
Berek J, Taylor P, McGuire W, Smith LM, Schultes B, Nicodemus CF. Oregovomab maintenance monoimmunotherapy does not improve outcomes in advanced ovarian cancer. J Clin Oncol 2009; 27: 418-25.
[4]
Sabbatini P, Harter P, Scambia G, et al. Abagovomab as maintenance therapy in patients with epithelial ovarian cancer: a phase III trial of the AGO OVAR, COGI, GINECO, and GEICO--the MIMOSA study. J Clin Oncol 2013; 31: 1554-61.
[5]
Leffers N, Daemen T, Helfrich W, et al. Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst Rev 2014; (9): CD007287
[6]
Oza AM, Cook AD, Pfisterer J, et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): Overall survival results of a phase 3 randomised trial. Lancet Oncol 2015; 16: 928-36.
[7]
Longuespée R, Boyon C, Desmons A, et al. Ovarian cancer molecular pathology. Cancer Metastasis Rev 2012; 31: 713-32.
[8]
Sölétormos G, Duffy MJ, Hassan SOA, et al. Clinical use of cancer biomarkers in epithelial ovarian cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Int J Gynecol Cancer 2016; 26: 43-51.
[9]
Markman M. Limitations to the use of the CA-125 antigen level in ovarian cancer. Curr Oncol Rep 2003; 5: 263-4.
[10]
Karlan BY, Alvarez RD, Strauss JF III. Evolving paradigms in research and care in ovarian cancers. Obstet Gynecol 2016; 128: 771-4.
[11]
Kanduc D. Immunogenicity, immunopathogenicity, and immunotolerance in one graph. Anticancer Agents Med Chem 2015; 15: 1264-8.
[12]
Huang J, Hu W, Sood AK. Prognostic biomarkers in ovarian cancer. Cancer Biomark 2010; 8: 231-51.
[13]
Spinosa JP, Kanduc D. Ovarian cancer: designing effective vaccines and specific diagnostic tools. Immunotherapy 2014; 6: 35-41.
[14]
Kanduc D. Immunogenicity in peptide-immunotherapy: From self/nonself to similar/dissimilar sequences. Adv Exp Med Biol 2008; 640: 198-207.
[15]
Kanduc D. Epitopic peptides with low similarity to the host proteome: towards biological therapies without side effects. Expert Opin Biol Ther 2009; 9: 45-53.
[16]
Lucchese G, Stufano A, Kanduc D. Proposing low-similarity peptide vaccines against Mycobacterium tuberculosis. J Biomed Biotechnol 2010; 2010832341
[17]
Lucchese A, Serpico R, Crincoli V, Shoenfeld Y, Kanduc D. Sequence uniqueness as a molecular signature of HIV-1-derived B-cell epitopes. Int J Immunopathol Pharmacol 2009; 22: 639-46.
[18]
Lucchese G, Stufano A, Kanduc D. Proteome-guided search for influenza A B-cell epitope. FEMS Immunol Med Microbiol 2009; 57: 88-92.
[19]
Kanduc D, Fanizzi FP, Lucchese G, Stevanovic S, Sinha AA, Mittelman A. NMR probing of in silico identification of anti-HPV16 E7 mAb linear peptide epitope. Peptides 2004; 25: 243-50.
[20]
Dummer R, Mittelman A, Fanizzi FP, Lucchese G, Willers J, Kanduc D. Non-self-discrimination as a driving concept in the identification of an immunodominant HMW-MAA epitopic peptide sequence by autoantibodies from melanoma cancer patients. Int J Cancer 2004; 111: 720-6.
[21]
Willers J, Lucchese A, Mittelman A, Dummer R, Kanduc D. Definition of anti-tyrosinase MAb T311 linear determinant by proteome-based similarity analysis. Exp Dermatol 2005; 14: 543-50.
[22]
Lucchese A, Mittelman A, Tessitore L, Serpico R, Sinha AA, Kanduc D. Proteomic definition of a desmoglein linear determinant common to Pemphigus vulgaris and Pemphigus foliaceous. J Transl Med 2006; 4: 37.
[23]
Lucchese A, Stevanovic S, Sinha AA, Mittelman A, Kanduc D. Role of MHC II affinity and molecular mimicry in defining anti-HER-2/neu MAb-3 linear peptide epitope. Peptides 2003; 24: 193-7.
[24]
Mittelman A, Tiwari R, Lucchese G, Willers J, Dummer R, Kanduc D. Identification of monoclonal anti-HMW-MAA antibody linear peptide epitope by proteomic database mining. J Invest Dermatol 2004; 123: 670-5.
[25]
Kanduc D, Tessitore L, Lucchese G, Kusalik A, Farber E, Marincola FM. Sequence uniqueness and sequence variability as modulating factors of human anti-HCV humoral immune response. Cancer Immunol Immunother 2008; 57: 1215-23.
[26]
La Marca A, Volpe A. The anti-Mullerian hormone and ovarian cancer. Hum Reprod Update 2007; 13: 265-73.
[27]
Abdel-Azeez HA, Labib HA, Sharaf SM, Refai AN. HE4 and mesothelin: novel biomarkers of ovarian carcinoma in patients with pelvic masses. Asian Pac J Cancer Prev 2010; 11: 111-6.
[28]
Haltia UM, Hallamaa M, Tapper J, et al. Roles of human epididymis protein 4, carbohydrate antigen 125, inhibin B and anti-Müllerian hormone in the differential diagnosis and follow-up of ovarian granulosa cell tumors. Gynecol Oncol 2017; 144: 83-9.
[29]
Färkkilä A, Koskela S, Bryk S, et al. The clinical utility of serum anti-Müllerian hormone in the follow-up of ovarian adult-type granulosa cell tumors. A comparative study with inhibin B. Int J Cancer 2015; 137: 1661-71.
[30]
Geerts I, Vergote I, Neven P, Billen J. The role of inhibins B and antimüllerian hormone for diagnosis and follow-up of granulosa cell tumors. Int J Gynecol Cancer 2009; 19: 847-55.
[31]
Hamed EO, Ahmed H, Sedeek OB, Mohammed AM, Abd-Alla AA, Abdel Ghaffar HM. Significance of HE4 estimation in comparison with CA125 in diagnosis of ovarian cancer and assessment of treatment response. Diagn Pathol 2013; 8: 11.
[32]
Fujiwara H, Suzuki M, Takeshima N, et al. Evaluation of human epididymis protein 4 (HE4) and Risk of Ovarian Malignancy Algorithm (ROMA) as diagnostic tools of type I and type II epithelial ovarian cancer in Japanese women. Tumour Biol 2015; 36: 1045-53.
[33]
Kristjansdottir B, Levan K, Partheen K, Sundfeldt K. Diagnostic performance of the biomarkers HE4 and CA125 in type I and type II epithelial ovarian cancer. Gynecol Oncol 2013; 131: 52-8.
[34]
Chiriva-Internati M, Grizzi F, Weidanz JA, et al. A NOD/SCID tumor model for human ovarian cancer that allows tracking of tumor progression through the biomarker Sp17. J Immunol Methods 2007; 321: 86-93.
[35]
Straughn JM Jr, Shaw DR, Guerrero A, et al. Expression of sperm protein 17 (Sp17) in ovarian cancer. Int J Cancer 2004; 108: 805-11.
[36]
Nakazato T, Kanuma T, Tamura T, Faried LS, Aoki H, Minegishi T. Sperm protein 17 influences the tissue-specific malignancy of clear cell adenocarcinoma in human epithelial ovarian cancer. Int J Gynecol Cancer 2007; 17: 426-32.
[37]
Skates SJ, Horick N, Yu Y, et al. Preoperative sensitivity and specificity for early-stage ovarian cancer when combining cancer antigen CA-125II, CA 15-3, CA 72-4, and macrophage colony-stimulating factor using mixtures of multivariate normal distributions. J Clin Oncol 2004; 22: 4059-66.
[38]
Yin BW, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J Biol Chem 2001; 276: 27371-5.
[39]
Scholler N, Urban N. CA125 in ovarian cancer. Biomarkers Med 2007; 1: 513-23.
[40]
Abd Hamid UM, Royle L, Saldova R, et al. A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 2008; 18: 1105-18.
[41]
Cornelissen LA, Van Vliet SJ. A bitter sweet symphony: Immune responses to altered O-glycan epitopes in cancer. Biomolecules 2016; 6(2)pii E26
[42]
The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res 2017; 45: D158-69.
[43]
Lucchese G, Stufano A, Trost B, Kusalik A, Kanduc D. Peptidology: short amino acid modules in cell biology and immunology. Amino Acids 2007; 33: 703-7.
[44]
Kanduc D. Homology, similarity, and identity in peptide epitope immunodefinition. J Pept Sci 2012; 18: 487-94.
[45]
Kanduc D. Pentapeptides as minimal functional units in cell biology and immunology. Curr Protein Pept Sci 2013; 14: 111-20.
[46]
Chen C, Li Z, Huang H, Suzek BE, Wu CH. UniProt Consortium. A fast Peptide Match service for UniProt Knowledgebase. Bioinformatics 2013; 29: 2808-9.
[47]
Källberg M, Wang H, Wang S, et al. Template-based protein structure modeling using the RaptorX web server. Nat Protoc 2012; 7: 1511-22.
[48]
Capone G, Novello G, Fasano C, et al. The oligodeoxynucleotide sequences corresponding to never-expressed peptide motifs are mainly located in the non-coding strand. BMC Bioinformatics 2010; 11: 383.
[49]
Andreu D, Albericio F, Solé NA, Munson MC, Ferrer M, Barany G. Formation of disulfide bonds in synthetic peptides and proteins. Methods Mol Biol 1994; 35: 91-169.
[50]
Niu S, Huang T, Feng KY, et al. Inter- and intra-chain disulfide bond prediction based on optimal feature selection. Protein Pept Lett 2013; 20: 324-35.
[51]
Lucchese G, Kanduc D. Potential crossreactivity of human immune responses against HCMV glycoprotein B. Curr Drug Discov Technol 2016; 13: 16-24.
[52]
Kanduc D. Peptides for anti-Ebolavirus vaccines. Curr Drug Discov Technol 2016; 13: 225-31.
[53]
Kanduc D. Peptide cross-reactivity: the original sin of vaccines. Front Biosci 2012; 4: 1393-401.
[54]
Kanduc D, Shoenfeld Y. From HBV to HPV: Designing vaccines for extensive and intensive vaccination campaigns worldwide. Autoimmun Rev 2016; 15: 1054-61.