[1]
A.M. Stephan, and K.S. Nahm, "Review on composite polymer electrolytes for lithium batteries", Polymer., vol. 47, pp. 5952-5964, 2006.
[2]
H.G. Bu, J. Wang, and X.B. Huang, "Fabric defect detection based on multiple fractal features and support vector data description", Eng. Appl. Artif. Intell., vol. 22, pp. 224-235, 2009.
[3]
S. Nashat, A. Abdullah, and M.Z. Abdullah, "Machine vision for crack in spection of biscuits featuring pyramid detection scheme", J. Food Eng., vol. 120, pp. 233-247, 2014.
[4]
C.C. Wang, B.C. Jiang, J.Y. Lin, and C.C. Chu, "Machine vision-based defect detection in IC images using the partial information correlation coefficient", IEEE Trans. Semicond. Manuf., vol. 26, pp. 378-384, 2013.
[5]
M. Israil, S.A. Anwar, and M.Z. Abdullah, "Automatic detection of micro-crack in solar wafers and cells: A review", Trans. Inst. Meas. Contr., vol. 35, pp. 606-618, 2013.
[6]
D. Weimer, H. Thamer, and B. Scholz, "Reiter, “Learning defect classifiers for textured surfaces using neural networks and statistical feature representations", Procedia CIRP, vol. 7, pp. 347-352, 2013.
[7]
S. Nashat, A. Abdullah, S. Aramvith, and M.Z. Abdullah, "Support vector machine approach to real-time inspection of biscuits on moving conveyor belt", Comput. Electron. Agric., vol. 75, pp. 147-158, 2011.
[8]
R. Shanmugamani, M. Sadique, and B. Ramamoorthy, "Detection and classification of surface defects of gun barrels using computer vision and machine learning", Measurement, vol. 60, pp. 222-230, 2015.
[9]
W. Mu, J. Gao, H. Jiang, Z. Wang, F. Chen, and C. Dang, "Automatic classification approach to weld defects based on PCA and SVM", Insight Non. Destr. Test. Cond. Monit, vol. 55, pp. 535-539, 2013.
[10]
L. Ma, "Support Tucker machines based marine oil spill detection using SAR images", Indian J. Mar. Sci., vol. 45, pp. 1445-1449, 2016.
[11]
L. Ma, Y. Hu, and Y. Zhang, "Support Tucker machines based bubble defect detection of lithium-ion polymer cell sheets", Eng. Lett, vol. 25, pp. 46-51, 2017.
[12]
S. Scheller, T. Hundert, and M. Braun, Detection system for detecting a soldered joint. U.S. Patent 20,160,131,598, 2013.
[13]
X. Huang, Y. Zhou, S. Liu, W. Liu, and C. Liu, Detection method of solder joint void defects based on laser pulse excitation simulation. CN Patent 102,015,000,417,524, 2015.
[14]
K. Stepanovich, P. Evgenevich, K. Yurevich, B. Anatolevich, F. Vladimirovich, and K. Aleksandrovich, Method of laser-ultrasound quality control of soldered joints. RU Patent
0,002,545,348, 2013.
[15]
L. Zhou, D. Zhang, H. Shen, and R. Lu, System and method for detection soldering quality. CN Patent 2017/050924, 2017.
[16]
J. Lin, Solder joint type detection method and apparatus based on image identification. CN Patent 10,201,600,091,842, 2016.
[17]
G.B. Huang, Q.Y. Zhu, and C.K. Siew, "Extreme learning machine: theory and applications", Neurocomputing, vol. 70, pp. 489-501, 2016.
[18]
G. Huang, G.B. Huang, S. Song, and K. You, "Trends in extreme learning machines: A review", Neural Netw., vol. 61, pp. 32-48, 2015.
[19]
G.B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification", IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 42, pp. 513-529, 2012.
[20]
S. Wang, C. Deng, W. Lin, and G.B. Huang, "NMF-based image quality assessment using extreme learning machine", IEEE Trans. Cybern ., vol. 47, pp. 232-243, . January 2017
[21]
T. Yksel, "Intelligent visual servoing with extreme learning machine and fuzzy logic", Expert Syst. Appl., vol. 72, pp. 344-356, 2017.
[22]
X. Liu, C. Deng, S. Wang, G.B. Huang, B. Zhao, and P. Lauren, "Fast and accurate spatiotemporal fusion based upon extreme learning machine", IEEE Geosci. Remote Sens. Lett., vol. 13, pp. 2039-2043, 2016.
[23]
L. Ma, C. Ma, W. Xie, and M. Sun, Detection method on defection of electronics component solder joint. CN Patent 2,017,113,389,990, 2017.
[24]
N. Dalal, and B. Triggs, "Histograms of oriented gradients for human detection", Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA,
IEEE, pp. 886-893, 2005.
[25]
W. Zong, G.B. Huang, and Y. Chen, "Weighted extreme learning machine for imbalance learning", Neurocomputing, vol. 101, pp. 229-242, 2013.
[26]
J. Yang, H. Yu, X. Yang, and X. Zuo, "Imbalanced extreme learning machine based on probability density estimation", Lect. Notes Comput. Sci., vol. 9426, pp. 160-167, 2015.
[27]
Y. He, R. Ashfaq, J.Z. Huang, and X. Wang, "Imbalanced ELM based on normal density estimation for binary-class classification", Lect. Notes Comput. Sci., vol. 9794, pp. 48-60, 2016.
[28]
R.A. Redner, and H.F. Walker, "Mixture densities, maximum likelihood and the EM algorithm", SIAM Rev., vol. 26, pp. 195-239, 1984.
[29]
G. McLachlan, and D. Peel, Finite Mixture Models New York., Springer-Verlag, 2000.