[1]
Constantine, C.A.; Mello, S.V.; Dupont, A.; Cao, X.; Santos, D.; Oliveira, O.N.; Strixino, F.T.; Pereira, E.C.; Cheng, T.C.; Defrank, J.J. Layer-by-layer self-assembled chitosan/poly (thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. J. Am. Chem., 2003, 125, 1805-1809.
[2]
Lang, Q.; Han, L.; Hou, C.; Wang, F.; Liu, A. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talanta, 2016, 156-157, 34-41.
[3]
Štajnbaher, D.; Zupančič-Kralj, L. Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. A, 2003, 1015, 185-198.
[4]
Ye, J.; Wu, J.; Liu, W. Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. Trends Analyt. Chem., 2009, 28, 1148-1163.
[5]
Rekha, K.; Thakur, M.; Karanth, N. Biosensors for the detection of organophosphorous pesticides. Crit. Rev. Biotechnol., 2000, 20, 213-235.
[6]
Liu, G.; Lin, Y. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem., 2005, 77, 5894-5901.
[7]
Joshi, K.A.; Tang, J.; Haddon, R.; Wang, J.; Chen, W.; Mulchandani, A. A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis, 2005, 17, 54-58.
[8]
Guo, L.; Yin, N.; Nie, D.; Fu, F.; Chen, G. An ultrasensitive electrochemical sensor for the mercuric ion via controlled assembly of SWCNTs. Chem. Commun. (Camb.), 2011, 47, 10665-10667.
[9]
Kong, R.M.; Zhang, X.B.; Zhang, L.L.; Jin, X.Y.; Huan, S.Y.; Shen, G.L.; Yu, R.Q. An ultrasensitive electrochemical “turn-on” label-free biosensor for Hg2+with AuNP-functionalized reporter DNA as a signal amplifier. Chem. Commun. (Camb.), 2009, 37, 5633-5635.
[10]
Huang, D.; Niu, C.; Wang, X.; Lv, X.; Zeng, G. “Turn-on” fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal. Chem., 2013, 85, 1164-1170.
[11]
Zhou, M.; Shang, L.; Li, B.; Huang, L.; Dong, S. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosens. Bioelectron., 2008, 24, 442-447.
[12]
Zhou, Y.; Tang, L.; Zeng, G.; Zhang, C.; Zhang, Y.; Xie, X. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Sens. Actuat. B., 2016, 223, 280-294.
[13]
Tang, L.; Chen, J.; Zeng, G.; Zhu, Y.; Zhang, Y.; Zhou, Y.; Xie, X.; Yang, G.; Zhang, S. Ordered mesoporous carbon and thiolated polyaniline modified electrode for simultaneous determination of Cadmium(II) and Lead(II) by anodic stripping voltammetry. Electroanalysis, 2014, 26, 2283-2291.
[14]
Yang, G.; Tang, L.; Zeng, G.; Cai, Y.; Tang, J.; Pang, Y.; Zhou, Y.; Liu, Y.; Wang, J.; Zhang, S.; Xiong, W. Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chem. Eng. J., 2015, 259, 854-864.
[15]
Lee, J.; Kim, J.; Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater., 2006, 18, 2073-2094.
[16]
Tang, L.; Zhou, Y.; Zeng, G.; Li, Z.; Liu, Y.; Zhang, Y.; Chen, G.; Yang, G.; Lei, X.; Wu, M. A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol. Analyst, 2013, 138, 3552-3560.
[17]
Wang, J.; Tang, L.; Somasundaran, P.; Fan, W.; Zeng, G.; Deng, Y.; Zhou, Y.; Wang, J.; Shen, Y. Highly effective antibacterial activity by the synergistic effect of three dimensional ordered mesoporous carbon-lysozyme composite. J. Colloid Interface Sci., 2017, 503, 131.
[18]
Wang, H.; Bo, X.; Zhang, Y.; Guo, L. Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction. Electrochim. Acta, 2013, 108, 404-411.
[19]
Zhou, Y.; Tang, L.; Zeng, G.; Chen, J.; Cai, Y.; Zhang, Y.; Yang, G.; Liu, Y.; Zhang, C.; Tang, W. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation. Biosens. Bioelectron., 2014, 61, 519-525.
[20]
Zhou, Y.; Tang, L.; Yang, G.; Zeng, G.; Deng, Y.; Huang, B.; Cai, Y.; Tang, J.; Wang, J.; Wu, Y. Phosphorus-doped ordered mesoporous carbons embedded with Pd/Fe bimetal nanoparticles for the dechlorination of 2,4-dichlorophenol. Catal. Sci. Technol., 2016, 6, 1930-1939.
[21]
Ma, X.; Ning, G.; Kan, Y.; Ma, Y.; Qi, C.; Chen, B.; Li, Y.; Lan, X.; Gao, J. Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors. Electrochim. Acta, 2014, 150, 108-113.
[22]
Xu, R.; Xiao, L.; Luo, L.; Yuan, Q.; Qin, D.; Hu, G.; Gan, W. Nitrogen, sulfur dual-doped mesoporous carbon modified glassy carbon electrode for simultaneous determination of hydroquinone and catechol. J. Electrochem. Soc., 2016, 163, B617-B623.
[23]
Jain, U.; Chauhan, N. Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet. Biosens. Bioelectron., 2017, 89, 578-584.
[24]
Maldonado, S.; Stevenson, K.J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B, 2005, 109, 4707-4716.
[25]
van Dommele, S.; de Jong, K.P.; Bitter, J.H. Nitrogen-containing carbon nanotubes as solid base catalysts. Chem. Commun., 2006, 46, 4859.
[26]
Tran, D.N.; Balkus, Jr, K.J. Perspective of recent progress in immobilization of enzymes. ACS Catal., 2011, 1, 956-968.
[27]
Daniel, M.C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104, 293-346.
[28]
Wang, J.; Bian, C.; Tong, J.; Sun, J.; Xia, S. L-Aspartic acid/L-cysteine/gold nanoparticle modified microelectrode for simultaneous detection of copper and lead. Thin Solid Films, 2012, 520, 6658-6663.
[29]
Di, J.; Hu, Y.; Song, Y.; Tu, Y. Formation of hydrous gold(I) oxide in the process of self-assembled cysteine on gold nanoparticles and its electrocatalytic application. J. Electroanal. Chem., 2012, 674, 12-16.
[30]
Zhang, Q.; Xu, Q.; Guo, Y.; Sun, X.; Wang, X. Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides. RSC Advances, 2016, 6, 24698-24703.
[31]
Hoffmann, F.; Güngerich, M.; Klar, P.J.; Fröba, M. Vibrational spectroscopy of periodic mesoporous organosilicas (PMOs) and their precursors: A closer look. J. Phys. Chem. C, 2007, 111, 5648-5660.
[32]
Liu, N.; Yin, L.; Wang, C.; Zhang, L.; Lun, N.; Xiang, D.; Qi, Y.; Gao, R. Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template. Carbon, 2010, 48, 3579-3591.
[33]
Tang, L.; Yang, G.D.; Zeng, G.M.; Cai, Y.; Li, S.S.; Zhou, Y.Y.; Pang, Y.; Liu, Y.Y.; Zhang, Y.; Luna, B. Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chem. Eng. J., 2014, 239, 114-122.
[34]
Pang, Y.; Zeng, G.; Tang, L.; Zhang, Y.; Liu, Y.; Lei, X.; Li, Z.; Zhang, J.; Xie, G. PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination, 2011, 281, 278-284.
[35]
Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 2009, 25, 10397-10401.
[36]
Wang, B.; Ji, X.; Zhao, H.; Wang, N.; Li, X.; Ni, R.; Liu, Y. An amperometric beta-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films. Biosens. Bioelectron., 2014, 55, 113-119.
[37]
Chen, J.; Du, D.; Yan, F.; Ju, H.X.; Lian, H.Z. Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon-nanotube-modified electrode. Chem. Eur. J., 2005, 11, 1467-1472.
[38]
Jha, N.; Ramaprabhu, S. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. Nanoscale, 2010, 2, 806-810.
[39]
Yu, G.; Wu, W.; Zhao, Q.; Wei, X.; Lu, Q. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens. Bioelectron., 2015, 68, 288-294.
[40]
Song, Y.; Zhang, M.; Wang, L.; Wan, L.; Xiao, X.; Ye, S.; Wang, J. A novel biosensor based on acetylecholinesterase/prussian blue–chitosan modified electrode for detection of carbaryl pesticides. Electrochim. Acta, 2011, 56, 7267-7271.
[41]
Chauhan, N.; Narang, J.; Pundir, C.S. Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosens. Bioelectron., 2011, 29, 82-88.
[42]
Nayak, P.; Anbarasan, B.; Ramaprabhu, S. Fabrication of organophosphorus biosensor using ZnO nanoparticle-decorated carbon nanotube–graphene hybrid composite prepared by a novel green technique. J. Phys. Chem. C, 2013, 117, 13202-13209.