Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Voltammetric Biosensor Based on Nitrogen-doped Ordered Mesoporous Carbon for Detection of Organophosphorus Pesticides in Vegetables

Author(s): Beiqing Long, Lin Tang*, Bo Peng, Guangming Zeng*, Yaoyu Zhou, Dan Mo, Siyuan Fang, Xilian Ouyang and Jiangfang Yu

Volume 15, Issue 1, 2019

Page: [92 - 100] Pages: 9

DOI: 10.2174/1573411014666180521090326

Price: $65

Abstract

Background: Pesticides residues in agricultural products have posed a serious threat to food safety and human health, so it is necessary to develop a rapid and accurate method to detect pesticide in the environment. N-OMC with excellent electroconductivity, high biocompatibility and the functional amino group that can be covalently attached to the enzyme can be applied to construct a sensitive and stable acetylcholinesterase biosensor for rapid and accurate detection of organophosphorus pesticides with the help of L-cysteine self-assembled monolayer and AuNPs.

Methods: Transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption measurements are used to characterize materials. Electrochemical impedance spectroscopy and cyclic voltammetry are used to study the surface features of modified electrodes. Differential pulse voltammetric is used to measure the peak current of modified electrodes. GC-MS is applied to verify the reliability of the prepared biosensor for organophosphorus pesticides detection.

Results: N-OMC was synthesized and applied to constructed stable and sensitive acetylcholinesterase biosensors. The combination of N-OMC, L-cysteine self-assembled monolayer and AuNPs to modify the electrode surface has greatly improved the conductivity of biosensor and provided a stable platform for acetylcholinesterase immobilization. The linear detection range of paraoxon was from 3 to 24 nM with a lower detection limit of 0.02 nM.

Conclusion: The biosensor exhibited satisfactory reproducibility, repeatability and stability, and was successfully employed to determine the paraoxon in vegetables as well as tap water samples, providing a promising tool for rapid and sensitive detection of organophosphorus pesticides in agricultural products.

Keywords: Acetylcholinesterase, Au nanoparticles, biosensor, L-cysteine, Nitrogen-doped ordered mesoporous carbon, Paraoxon, Self-assembly

Graphical Abstract

[1]
Constantine, C.A.; Mello, S.V.; Dupont, A.; Cao, X.; Santos, D.; Oliveira, O.N.; Strixino, F.T.; Pereira, E.C.; Cheng, T.C.; Defrank, J.J. Layer-by-layer self-assembled chitosan/poly (thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. J. Am. Chem., 2003, 125, 1805-1809.
[2]
Lang, Q.; Han, L.; Hou, C.; Wang, F.; Liu, A. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talanta, 2016, 156-157, 34-41.
[3]
Štajnbaher, D.; Zupančič-Kralj, L. Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. A, 2003, 1015, 185-198.
[4]
Ye, J.; Wu, J.; Liu, W. Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. Trends Analyt. Chem., 2009, 28, 1148-1163.
[5]
Rekha, K.; Thakur, M.; Karanth, N. Biosensors for the detection of organophosphorous pesticides. Crit. Rev. Biotechnol., 2000, 20, 213-235.
[6]
Liu, G.; Lin, Y. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem., 2005, 77, 5894-5901.
[7]
Joshi, K.A.; Tang, J.; Haddon, R.; Wang, J.; Chen, W.; Mulchandani, A. A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis, 2005, 17, 54-58.
[8]
Guo, L.; Yin, N.; Nie, D.; Fu, F.; Chen, G. An ultrasensitive electrochemical sensor for the mercuric ion via controlled assembly of SWCNTs. Chem. Commun. (Camb.), 2011, 47, 10665-10667.
[9]
Kong, R.M.; Zhang, X.B.; Zhang, L.L.; Jin, X.Y.; Huan, S.Y.; Shen, G.L.; Yu, R.Q. An ultrasensitive electrochemical “turn-on” label-free biosensor for Hg2+with AuNP-functionalized reporter DNA as a signal amplifier. Chem. Commun. (Camb.), 2009, 37, 5633-5635.
[10]
Huang, D.; Niu, C.; Wang, X.; Lv, X.; Zeng, G. “Turn-on” fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal. Chem., 2013, 85, 1164-1170.
[11]
Zhou, M.; Shang, L.; Li, B.; Huang, L.; Dong, S. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosens. Bioelectron., 2008, 24, 442-447.
[12]
Zhou, Y.; Tang, L.; Zeng, G.; Zhang, C.; Zhang, Y.; Xie, X. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Sens. Actuat. B., 2016, 223, 280-294.
[13]
Tang, L.; Chen, J.; Zeng, G.; Zhu, Y.; Zhang, Y.; Zhou, Y.; Xie, X.; Yang, G.; Zhang, S. Ordered mesoporous carbon and thiolated polyaniline modified electrode for simultaneous determination of Cadmium(II) and Lead(II) by anodic stripping voltammetry. Electroanalysis, 2014, 26, 2283-2291.
[14]
Yang, G.; Tang, L.; Zeng, G.; Cai, Y.; Tang, J.; Pang, Y.; Zhou, Y.; Liu, Y.; Wang, J.; Zhang, S.; Xiong, W. Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chem. Eng. J., 2015, 259, 854-864.
[15]
Lee, J.; Kim, J.; Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater., 2006, 18, 2073-2094.
[16]
Tang, L.; Zhou, Y.; Zeng, G.; Li, Z.; Liu, Y.; Zhang, Y.; Chen, G.; Yang, G.; Lei, X.; Wu, M. A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol. Analyst, 2013, 138, 3552-3560.
[17]
Wang, J.; Tang, L.; Somasundaran, P.; Fan, W.; Zeng, G.; Deng, Y.; Zhou, Y.; Wang, J.; Shen, Y. Highly effective antibacterial activity by the synergistic effect of three dimensional ordered mesoporous carbon-lysozyme composite. J. Colloid Interface Sci., 2017, 503, 131.
[18]
Wang, H.; Bo, X.; Zhang, Y.; Guo, L. Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction. Electrochim. Acta, 2013, 108, 404-411.
[19]
Zhou, Y.; Tang, L.; Zeng, G.; Chen, J.; Cai, Y.; Zhang, Y.; Yang, G.; Liu, Y.; Zhang, C.; Tang, W. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation. Biosens. Bioelectron., 2014, 61, 519-525.
[20]
Zhou, Y.; Tang, L.; Yang, G.; Zeng, G.; Deng, Y.; Huang, B.; Cai, Y.; Tang, J.; Wang, J.; Wu, Y. Phosphorus-doped ordered mesoporous carbons embedded with Pd/Fe bimetal nanoparticles for the dechlorination of 2,4-dichlorophenol. Catal. Sci. Technol., 2016, 6, 1930-1939.
[21]
Ma, X.; Ning, G.; Kan, Y.; Ma, Y.; Qi, C.; Chen, B.; Li, Y.; Lan, X.; Gao, J. Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors. Electrochim. Acta, 2014, 150, 108-113.
[22]
Xu, R.; Xiao, L.; Luo, L.; Yuan, Q.; Qin, D.; Hu, G.; Gan, W. Nitrogen, sulfur dual-doped mesoporous carbon modified glassy carbon electrode for simultaneous determination of hydroquinone and catechol. J. Electrochem. Soc., 2016, 163, B617-B623.
[23]
Jain, U.; Chauhan, N. Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet. Biosens. Bioelectron., 2017, 89, 578-584.
[24]
Maldonado, S.; Stevenson, K.J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B, 2005, 109, 4707-4716.
[25]
van Dommele, S.; de Jong, K.P.; Bitter, J.H. Nitrogen-containing carbon nanotubes as solid base catalysts. Chem. Commun., 2006, 46, 4859.
[26]
Tran, D.N.; Balkus, Jr, K.J. Perspective of recent progress in immobilization of enzymes. ACS Catal., 2011, 1, 956-968.
[27]
Daniel, M.C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104, 293-346.
[28]
Wang, J.; Bian, C.; Tong, J.; Sun, J.; Xia, S. L-Aspartic acid/L-cysteine/gold nanoparticle modified microelectrode for simultaneous detection of copper and lead. Thin Solid Films, 2012, 520, 6658-6663.
[29]
Di, J.; Hu, Y.; Song, Y.; Tu, Y. Formation of hydrous gold(I) oxide in the process of self-assembled cysteine on gold nanoparticles and its electrocatalytic application. J. Electroanal. Chem., 2012, 674, 12-16.
[30]
Zhang, Q.; Xu, Q.; Guo, Y.; Sun, X.; Wang, X. Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides. RSC Advances, 2016, 6, 24698-24703.
[31]
Hoffmann, F.; Güngerich, M.; Klar, P.J.; Fröba, M. Vibrational spectroscopy of periodic mesoporous organosilicas (PMOs) and their precursors: A closer look. J. Phys. Chem. C, 2007, 111, 5648-5660.
[32]
Liu, N.; Yin, L.; Wang, C.; Zhang, L.; Lun, N.; Xiang, D.; Qi, Y.; Gao, R. Adjusting the texture and nitrogen content of ordered mesoporous nitrogen-doped carbon materials prepared using SBA-15 silica as a template. Carbon, 2010, 48, 3579-3591.
[33]
Tang, L.; Yang, G.D.; Zeng, G.M.; Cai, Y.; Li, S.S.; Zhou, Y.Y.; Pang, Y.; Liu, Y.Y.; Zhang, Y.; Luna, B. Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chem. Eng. J., 2014, 239, 114-122.
[34]
Pang, Y.; Zeng, G.; Tang, L.; Zhang, Y.; Liu, Y.; Lei, X.; Li, Z.; Zhang, J.; Xie, G. PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination, 2011, 281, 278-284.
[35]
Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 2009, 25, 10397-10401.
[36]
Wang, B.; Ji, X.; Zhao, H.; Wang, N.; Li, X.; Ni, R.; Liu, Y. An amperometric beta-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films. Biosens. Bioelectron., 2014, 55, 113-119.
[37]
Chen, J.; Du, D.; Yan, F.; Ju, H.X.; Lian, H.Z. Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon-nanotube-modified electrode. Chem. Eur. J., 2005, 11, 1467-1472.
[38]
Jha, N.; Ramaprabhu, S. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. Nanoscale, 2010, 2, 806-810.
[39]
Yu, G.; Wu, W.; Zhao, Q.; Wei, X.; Lu, Q. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens. Bioelectron., 2015, 68, 288-294.
[40]
Song, Y.; Zhang, M.; Wang, L.; Wan, L.; Xiao, X.; Ye, S.; Wang, J. A novel biosensor based on acetylecholinesterase/prussian blue–chitosan modified electrode for detection of carbaryl pesticides. Electrochim. Acta, 2011, 56, 7267-7271.
[41]
Chauhan, N.; Narang, J.; Pundir, C.S. Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosens. Bioelectron., 2011, 29, 82-88.
[42]
Nayak, P.; Anbarasan, B.; Ramaprabhu, S. Fabrication of organophosphorus biosensor using ZnO nanoparticle-decorated carbon nanotube–graphene hybrid composite prepared by a novel green technique. J. Phys. Chem. C, 2013, 117, 13202-13209.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy