[1]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39, 44-84.
[2]
Ray, P.D.; Huang, B-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24, 981-990.
[3]
Vertuani, S.; Angusti, A.; Manfredini, S. The antioxidants and pro-antioxidants network: An overview. Curr. Pharm. Des., 2004, 10, 1677-1694.
[5]
Rangaswamy, J.; Kumar, H.V.; Harini, S.T.; Naik, N. Functionalized 3-(benzofuran-2-yl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole scaffolds: A new class of antimicrobials and antioxidants. Arab. J. Chem., 2017, 10, S2685-S2696.
[6]
Mahajan, P.; Nikam, M.; Asrondkar, A.; Bobade, A.; Gill, C. Synthesis, antioxidant, and anti‐inflammatory evaluation of novel thiophene‐fused quinoline based β‐diketones and derivatives. J. Heterocycl. Chem., 2017, 54, 1415-1422.
[7]
Nagamallu, R.; Srinivasan, B.; Ningappa, M.B.; Kariyappa, A.K. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities. Bioorg. Med. Chem. Lett., 2016, 26, 690-694.
[8]
Hernández-Vázquez, E.; Salgado-Barrera, S.; Ramírez-Espinosa, J.J.; Estrada-Soto, S.; Hernández-Luis, F. Synthesis and molecular docking of N′-arylidene-5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carbohydrazides as novel hypoglycemic and antioxidant dual agents. Bioorg. Med. Chem., 2016, 24, 2298-2306.
[9]
Hassan, G.S.; Abou-Seri, S.M.; Kamel, G.; Ali, M.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: Design, synthesis and evaluation as potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 482-493.
[10]
Uslaner, J.M.; Parmentier-Batteur, S.; Flick, R.B.; Surles, N.O.; Lam, J.S.; McNaughton, C.H.; Jacobson, M.A.; Hutson, P.H. Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology, 2009, 57, 531-538.
[11]
Friedrich, G.; Rose, T.; Rissler, K. Determination of lonazolac and its hydroxy and O-sulfated metabolites by on-line sample preparation liquid chromatography with fluorescence detection. J. Chromatogr. B., 2002, 766, 295-305.
[12]
Hampp, C.; Hartzema, A.G.; Kauf, T.L. Cost-utility analysis of rimonabant in the treatment of obesity. Value Health, 2008, 11, 389-399.
[13]
Spitz, I.; Novis, B.; Ebert, R.; Trestian, S.; LeRoith, D.; Creutzfeldt, W. Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism, 1982, 31, 380-382.
[14]
Luttinger, D.; Hlasta, D.J. Antidepressant agents. Annu. Rep. Med. Chem., 1987, 22, 21-30.
[15]
Tsutomu, K.; Toshitaka, N. Effects of 1, 3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole [difenamizole] on a conditioned avoidance response. Neuropharmacology, 1978, 17, 249-256.
[16]
García-Lozano, J.; Server-Carrió, J.; Escrivà, E.; Folgado, J-V.; Molla, C.; Lezama, L. X-ray crystal structure and electronic properties of chlorobis (mepirizole) copper (II) tetrafluoroborate (mepirizole= 4-methoxy-2-(5-methoxy-3-methyl-1H-pyrazol-1-yl)-6-methylpyrimidine). Polyhedron, 1997, 16, 939-944.
[17]
Kamal, A.; Shaik, A.B.; Jain, N.; Kishor, C.; Nagabhushana, A.; Supriya, B.; Kumar, G.B.; Chourasiya, S.S.; Suresh, Y.; Mishra, R.K. Design and synthesis of pyrazole-oxindole conjugates targeting tubulin polymerization as new anticancer agents. Eur. J. Med. Chem., 2015, 92, 501-513.
[18]
Farag, A.M.; Mayhoub, A.S.; Eldebss, T.; Amr, A.G.E.; Ali, K.A.; Abdel‐Hafez, N.A.; Abdulla, M.M. Synthesis and structure‐activity relationship studies of pyrazole‐based heterocycles as antitumor agents. Arch. Pharm., 2010, 343, 384-396.
[19]
Karrouchi, K.; Chemlal, L.; Taoufik, J.; Cherrah, Y.; Radi, S.; El Abbes, F.M.; Ansar, M. Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1,2,4-triazole derivatives containing a pyrazole moiety. Ann. Pharm. Fr., 2016, 74, 431-438.
[20]
Chae, E.; Shin, Y-J.; Ryu, E-J.; Ji, M.K.; Ryune, C.N.; Lee, K-H.; Jeong, H.J.; Kim, S-J.; Choi, Y.; Seok, O.K.; Park, C-E.; Soo Yoon, Y. Discovery of biological evaluation of pyrazole/imidazole amides as mGlu5 receptor negative allosteric modulators. Bioorg. Med. Chem. Lett., 2013, 23, 2134-2139.
[21]
Ouyang, G.; Chen, Z.; Cai, X-J.; Song, B-A.; Bhadury, P.S.; Yang, S.; Jin, L-H.; Xue, W.; Hu, D-Y.; Zeng, S. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg. Med. Chem., 2008, 16, 9699-9707.
[22]
Vijesh, A.; Isloor, A.M.; Shetty, P.; Sundershan, S.; Fun, H.K. New pyrazole derivatives containing 1, 2, 4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur. J. Med. Chem., 2013, 62, 410-415.
[23]
Niţulescu, G.M.; Păunescu, H.; Drăghici, C.; Missir, A-V.; Coman, O.A.; Fulga, I. Synthesis and pharmacological evaluation of some new pyrazole derivatives. Farmacia, 2010, 58, 190-197.
[24]
Tewari, A.K.; Singh, V.P.; Yadav, P.; Gupta, G.; Singh, A.; Goel, R.K.; Shinde, P.; Mohan, C.G. Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorg. Chem., 2014, 56, 8-15.
[25]
Fustero, S.; Román, R.; Sanz-Cervera, J.F.; Simón-Fuentes, A.; Cuñat, A.C.; Villanova, S.; Murguía, M. Improved regioselectivity in pyrazole formation through the use of fluorinated alcohols as solvents: Synthesis and biological activity of fluorinated tebufenpyrad analogs. J. Org. Chem., 2008, 73, 3523-3529.
[26]
Dai, H.; Xiao, Y-S.; Li, Z.; Xu, X-Y.; Qian, X-H. The thiazoylmethoxy modification on pyrazole oximes Synthesis and insecticidal biological evaluation beyond acaricidal activity. Chin. Chem. Lett., 2014, 25, 1014-1016.
[27]
Nagahori, H.; Yoshino, H.; Tomigahara, Y.; Isobe, N.; Kaneko, H.; Nakatsuka, I. Metabolism of furametpyr. 1. Identification of metabolites and in vitro biotransformation in rats and humans. J. Agric. Food Chem., 2000, 48, 5754-5759.
[28]
Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem., 2009, 17, 4127-4133.
[29]
Karrouchi, K.; Yousfi, E.; Sebbar, N.; Ramli, Y.; Taoufik, J.; Ouzidan, Y.; Ansar, M.H.; Mabkhot, Y.; Ghabbour, H.; Radi, S. New pyrazole-hydrazone derivatives: X-ray analysis, molecular structure investigation via Density Functional Theory (DFT) and their high in-situ catecholase activity. Int. J. Mol. Sci., 2017, 18, 2215.
[30]
Rollas, S.; Küçükgüzel, S.G. Biological activities of hydrazone derivatives. Molecules, 2007, 12, 1910-1939.
[32]
Fan, C.; Su, H.; Zhao, J.; Zhao, B.; Zhang, S.; Miao, J. A novel copper complex of salicylaldehyde pyrazole hydrazone induces apoptosis through up-regulating integrin β4 in H322 lung carcinoma cells. Eur. J. Med. Chem., 2010, 45, 1438-1446.
[33]
Charret, K.S.; Lagrota-Cândido, J.; Carvalho-Pinto, C.E.; Hottz, C.F.; Lira, M-L.F.; Rodrigues, R.F.; Gomes, A.O.; Bernardino, A.M.; Canto-Cavalheiro, M.M.; Leon, L.L.; Amaral, V.F. The histopathological and immunological pattern of CBA mice infected with Leishmania amazonensis after treatment with pyrazole carbohydrazide derivatives. Exp. Parasitol., 2013, 133, 201-210.
[34]
Dias, L.R.S.; Salvador, R.R.S. Pyrazole carbohydrazide derivatives of pharmaceutical interest. Pharmaceuticals, 2012, 5, 317-324.
[35]
Xia, Y.; Fan, C-D.; Zhao, B-X.; Zhao, J.; Shin, D-S.; Miao, J-Y. Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide hydrazone derivatives as potential agents against A549 lung cancer cells. Eur. J. Med. Chem., 2008, 43, 2347-2353.
[36]
Şahin, D.; Bayrak, H.; Demirbaş, A.; Demirbaş, N.; Karaoğlu, Ş.A. Design and synthesis of new 1, 2, 4-triazole derivatives containing morpholine moiety as antimicrobial agents. Turk. J. Chem., 2012, 36, 411-426.
[37]
Wang, B-L.; Zhang, L-Y.; Zhan, Y-Z.; Zhang, Y.; Zhang, X.; Wang, L-Z.; Li, Z-M. Synthesis and biological activities of novel 1, 2, 4-triazole thiones and bis (1, 2, 4-triazole thiones) containing phenylpyrazole and piperazine moieties. J. Fluor. Chem., 2016, 184, 36-44.
[38]
Mohan, K.K.; Inturi, B.; Pujar, G.V.; Purohit, M.N.; Vijaykumar, G.S. Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1,2,4-triazoles as potential anti-tubercular agents. Eur. J. Med. Chem., 2014, 84, 516-529.
[39]
Ünver, Y.; Sancak, K.; Çelik, F.; Birinci, E.; Küçük, M.; Soylu, S.; Burnaz, N.A. New thiophene-1,2,4-triazole-5(3)-ones: Highly bioactive thiosemicarbazides, structures of Schiff bases and triazole-thiols. Eur. J. Med. Chem., 2014, 84, 639-650.
[40]
Radwan, R.R.; Zaher, N.H.; El-Gazzar, M.G. Novel 1, 2, 4-triazole derivatives as antitumor agents against hepatocellular carcinoma. Chem. Biol. Interact., 2017, 274, 68-79.
[41]
Labanauskas, L.; Udrenaite, E.; Gaidelis, P.; Brukštus, A. Synthesis of 5-(2-,3- and 4-methoxyphenyl)-4H-1,2,4-triazole-3-thiol derivatives exhibiting anti-inflammatory activity. Farmaco, 2004, 59, 255-259.
[42]
Li, Y-D.; Mao, W-T.; Fan, Z-J.; Li, J-J.; Fang, Z.; Ji, X-T.; Hua, X-W.; Zong, G-N.; Li, F-Y.; Liu, C-L.; Yu, J-H. Synthesis and biological evaluation of novel 1,2,4-triazole containing 1,2,3-thiadiazole derivatives. Chin. Chem. Lett., 2013, 24, 1134-1136.
[43]
Raval, J.P.; Akhaja, T.N.; Jaspara, D.M.; Myangar, K.N.; Patel, N.H. Synthesis and in vitro antibacterial activity of new oxoethylthio-1,3,4-oxadiazole derivatives. J. Saudi Chem. Soc., 2014, 18, 101-106.
[44]
Rane, R.A.; Bangalore, P.; Borhade, S.D.; Khandare, P.K. Synthesis and evaluation of novel 4-nitropyrrole-based 1, 3, 4-oxadiazole derivatives as antimicrobial and anti-tubercular agents. Eur. J. Med. Chem., 2013, 70, 49-58.
[45]
Zhang, S.; Luo, Y.; He, L-Q.; Liu, Z-J.; Jiang, A-Q.; Yang, Y-H.; Zhu, H-L. Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity. Bioorg. Med. Chem., 2013, 21, 3723-3729.
[46]
Biju, C.R.; Ilango, K.; Prathap, M.; Rekha, K. Design and microwave-assisted synthesis of 1,3,4-oxadiazole derivatives for analgesie and anti-inflammatory activity. Young Pharm, 2012, 4, 33-37.
[47]
Li, T.; Li, S.; Dong, Y.; Zhu, R.; Liu, Y. Antioxidant activity of penta-oligogalacturonide, isolated from haw pectin, suppresses triglyceride synthesis in mice fed with a high-fat diet. Food Chem., 2014, 145, 335-341.
[48]
Himmi, B.; Douche, D.; El Louzi, A.; Karrouchi, K. Synthesis and in vitro antioxidant activity of some 8-hydoxyquinoline derivatives. J. Chem. Pharm. Res., 2016, 8, 525-528.
[49]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26, 1231-1237.
[50]
Aktas-Yokus, O.; Yuksek, H.; Gursoy-Kol, O.; Alpay-Karaoglu, S. Synthesis and biological evaluation of new 1, 2, 4-triazole derivatives with their potentiometric titrations. Med. Chem. Res., 2015, 24, 2813-2824.
[51]
Rival, S.G.; Boeriu, C.G.; Wichers, H.J. Caseins and casein hydrolysates antioxidative properties and relevance to lipoxygenase inhibition. J. Agric. Food Chem., 2001, 49, 295-302.
[52]
Finefrock, A.E.; Bush, A.I.; Doraiswamy, P.M. Current status of metals as therapeutic targets in Alzheimer’s disease. J. Am. Geriatr. Soc., 2003, 51, 1143-1148.
[53]
Leong, L.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem., 2002, 76, 69-75.
[54]
Gordon, M.H. The Mechanism of Antioxidant Action in Vitro. In:
Hudson B.J.F. (eds) Food Antioxidants. Elsevier Applied Food
Science Series. Springer, Dordrecht. 1990.