Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

How Can Xenosensors Act in Chemical Detoxification Metabolism?

Author(s): Dongsheng Che, Mohammed Hamdy Farouk*, Ibrahim Abd El-Razek, Adams Seidu, Naydia Ekua Ekuful, Guixin Qin, Hailong Jiang and Lianyu Yang*

Volume 20, Issue 2, 2019

Page: [172 - 183] Pages: 12

DOI: 10.2174/1389203719666180514144955

Price: $65

Abstract

There are some disparities between pharmacological and toxicological xenobiotic receptor (xenosensors) pathways. These variations include receptor models that indicate several toxic patterns. Such models have demanded some update from traditional medical receptor relations studied by pharmacologists. These may include the response time, the molecular level, and unclear directions of toxicological metabolism. Xenosensors activities were affected by many factors that include genetic elements, physiological status, xenobiotic complication, and species-specific variations. Thus, this review aims to highlight the most advanced features of xenosensors related to toxicant biotransformations and other patterns such as characteristics, recognition, and the relations between different xenosensors.

Keywords: AhR, nuclear receptors, species variations, toxic metabolism, Xenosensors, detoxification.

Graphical Abstract

[1]
El-Moneim, A.; Afify, M. Transportation in living cells. Int. J. Agric. Res., 2010, 5, 562-575.
[2]
Chou, R.; Cruciani, R.A.; Fiellin, D.A.; Compton, P.; Farrar, J.T.; Haigney, M.C.; Inturrisi, C.; Knight, J.R.; Otis-Green, S.; Marcus, S.M.; Mehta, D.; Meyer, M.C.; Portenoy, R.; Savage, S.; Strain, E.; Walsh, S.; Zeltzer, L. American Pain, S.; Heart Rhythm, S. Methadone safety: A clinical practice guideline from the American Pain Society and College on Problems of Drug Dependence, in collaboration with the Heart Rhythm Society. J. Pain, 2014, 15, 321-337.
[3]
Gregus, Z.; Klaassen, C.D. Mechanisms of toxicity.In Klaassen CD:NY, 2003.
[4]
Caspi, R.R. Immunotherapy of autoimmunity and cancer: The penalty for success. Nat. Rev. Immunol., 2008, 8, 970-976.
[5]
Roh, M.S.; Hong, S.H.; Jeong, J.S.; Kwon, H.C.; Kim, M.C.; Cho, S.H.; Yoon, J.H.; Hwang, T.H. Gene expression profiling of breast cancers with emphasis of beta-catenin regulation. J. Korean Med. Sci., 2004, 19, 275-282.
[6]
Kim, S.J.; Choi, S.J.; Jang, J.S.; Cho, H.J.; Kim, I.D. Innovative nanosensor for disease diagnosis. Acc. Chem. Res., 2017, 50, 1587-1596.
[7]
Rang, H.P. The receptor concept: Pharmacology’s big idea. Br. J. Pharmacol., 2006, 147, S9-S16.
[8]
Guengerich, F.P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol., 2001, 14, 611-650.
[9]
Beischlag, T.V.; Luis Morales, J.; Hollingshead, B.D.; Perdew, G.H. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr., 2008, 18, 207-250.
[10]
Kes, P. Serum gastrin concentration in chronic renal failure. Acta Med. Croatica, 1992, 46, 47-58.
[11]
Giuliani, A.; Benigni, R.; Zbilut, J.P.; Webber, C.L.; Sirabella, P.; Colosimo, A. Nonlinear signal analysis methods in the elucidation of protein sequence−structure relationships. Chem. Rev., 2002, 102, 1471-1492.
[12]
Spoo, W. Toxicokinetics.In Plumlee K:St Louis, 2004.
[13]
Rozman, K.; Klaassen, C. Absorption, distribution, and excretion of toxicants.InKlaassen CD; Watkins III JB: NY, 2003.
[14]
Oberdorster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; Olin, S.; Monteiro-Riviere, N.; Warheit, D.; Yang, H. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol., 2005, 2, 8-43.
[15]
Shin, S.W.; Song, I.H.; Um, S.H. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials (Basel), 2015, 5, 1351-1365.
[16]
Mazzanti, M.L.; Walvick, R.P.; Zhou, X.; Sun, Y.; Shah, N.; Mansour, J.; Gereige, J.; Albert, M.S. Distribution of hyperpolarized xenon in the brain following sensory stimulation: Preliminary MRI findings. PLoS One, 2011, 6, e21607.
[17]
Patel, A.; Zhang, S.; Paramahamsa, M.; Jiang, W.; Wang, L.; Moorthy, B.; Shivanna, B. Leflunomide induces pulmonary and hepatic CYP1A enzymes via aryl hydrocarbon receptor. Drug Metab. Dispos., 2015, 43, 1966-1970.
[18]
Vogel, C.F.; Khan, E.M.; Leung, P.S.; Gershwin, M.E.; Chang, W.W.; Wu, D.; Haarmann-Stemmann, T.; Hoffmann, A.; Denison, M.S. Cross-talk between Aryl hydrocarbon receptor and the inflammatory response a role for nuclear factor-κB. J. Biol. Chem., 2014, 289, 1866-1875.
[19]
Xu, C.; Li, C.Y.; Kong, A.N. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch. Pharm. Res., 2005, 28, 249-268.
[20]
Zhou, W.; Gosch, G.; Guerra, T.; Broek, D.; Wu, G.; Walker, S.; Polejaeva, I. Amino acid profiles in first trimester amniotic fluids of healthy bovine cloned pregnancies are similar to those of IVF pregnancies, but not nonviable cloned pregnancies. Theriogenology, 2014, 81, 225-229.
[21]
Ishii, Y.; Takeda, S.; Yamada, H. Modulation of UDP-glucuronosyltransferase activity by protein-protein association. Drug Metab. Rev., 2010, 42, 145-158.
[22]
Szabo, D.T.; Diliberto, J.J.; Hakk, H.; Huwe, J.K.; Birnbaum, L.S. Toxicokinetics of the flame retardant hexabromocyclododecane gamma: Effect of dose, timing, route, repeated exposure, and metabolism. Toxicol. Sci., 2010, 117, 282-293.
[23]
Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science, 2017, 356, 2770.
[24]
Croom, E. Metabolism of xenobiotics of human environments. Prog. Mol. Biol. Translat. Sci., 2012, 112, 31-88.
[25]
Caldwell, J.; Gardner, I.; Swales, N. An introduction to drug disposition: The basic principles of absorption, distribution, metabolism, and excretion. Toxicol. Pathol., 1995, 23, 102-114.
[26]
Tolson, A.H.; Wang, H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv. Drug Deliv. Rev., 2010, 62, 1238-1249.
[27]
Martinez, I.; Bennett, G.N.; San, K.Y. Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metab. Eng., 2010, 12, 499-509.
[28]
Manickam, R.; Wahli, W. Roles of peroxisome proliferator-activated receptor β/δ in skeletal muscle physiology. Biochimie, 2017, 136, 42-48.
[29]
Hernandez, J.P.; Mota, L.C.; Baldwin, W.S. Activation of CAR and PXR by dietary, environmental and occupational chemicals alters drug metabolism, intermediary metabolism, and cell proliferation. Curr. Pharmacogenomics Person. Med., 2009, 7, 81-105.
[30]
Reschly, E.J.; Krasowski, M.D. Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr. Drug Metab., 2006, 7, 349-365.
[31]
Hernandez-Ramirez, L.C.; Trivellin, G.; Stratakis, C.A. Role of phosphodiesterases on the function of aryl hydrocarbon receptor-interacting protein (AIP) in the pituitary gland and on the evaluation of AIP gene variants. Horm. Metab. Res., 2017, 49, 286-295.
[32]
Kawamoto, T.; Sueyoshi, T.; Zelko, I.; Moore, R.; Washburn, K.; Negishi, M. Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol. Cell. Biol., 1999, 19, 6318-6322.
[33]
Li, H.; Chen, T.; Cottrell, J.; Wang, H. Nuclear translocation of adenoviral-enhanced yellow fluorescent protein-tagged-human constitutive androstane receptor (hCAR): A novel tool for screening hCAR activators in human primary hepatocytes. Drug Metab. Dispos., 2009, 37, 1098-1106.
[34]
Bezirtzoglou, E.E. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile. Microb. Ecol. Health Dis., 2012, 23
[http://dx.doi.org/10.3402/mehd.v23i0.18370]
[35]
Petrick, J.S.; Klaassen, C.D. Importance of hepatic induction of constitutive androstane receptor and other transcription factors that regulate xenobiotic metabolism and transport. Drug Metab. Dispos., 2007, 35, 1806-1815.
[36]
Di Masi, A.; De Marinis, E.; Ascenzi, P.; Marino, M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol. Aspects Med., 2009, 30, 297-343.
[37]
Oesch, F.; Fabian, E.; Guth, K.; Landsiedel, R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch. Toxicol., 2014, 88, 2135-2190.
[38]
Zhang, D.; Luo, G.; Ding, X.; Lu, C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm. Sin. B, 2012, 2, 549-561.
[39]
Fan, P.; Song, P.; Li, L.; Huang, C.; Chen, J.; Yang, W.; Qiao, S.Y.; Wu, G.; Zhang, G.; Ma, X. Roles of biogenic amines in intestinal signaling. Curr. Protein Pept. Sci., 2017, 18, 532-540.
[40]
Pelkonen, O.; Turpeinen, M.; Hakkola, J.; Abass, K.; Pasanen, M.; Raunio, H.; Vähäkangas, K. Preservation, induction or incorporation of metabolism into the in vitro cellular system views to current opportunities and limitations. Toxicol. In Vitro, 2013, 27, 1578-1583.
[41]
Decleves, X.; Jacob, A.; Yousif, S.; Shawahna, R.; Potin, S.; Scherrmann, J.M. Interplay of drug metabolizing CYP450 enzymes and ABC transporters in the blood-brain barrier. Curr. Drug Metab., 2011, 12, 732-741.
[42]
Pavek, P.; Dvorak, Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr. Drug Metab., 2008, 9, 129-143.
[43]
Castell, J.V.; Donato, M.T.; Gomez-Lechon, M.J. Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. Exp. Toxicol. Pathol., 2005, 57, 189-204.
[44]
Myllynen, P.; Pasanen, M.; Vahakangas, K. The fate and effects of xenobiotics in human placenta. Expert Opin. Drug Metab. Toxicol., 2007, 3, 331-346.
[45]
Obolenskaya, M.Y.; Teplyuk, N.M.; Divi, R.L.; Poirier, M.C.; Filimonova, N.B.; Zadrozna, M.; Pasanen, M.J. Human placental glutathione S-transferase activity and polycyclic aromatic hydrocarbon DNA adducts as biomarkers for environmental oxidative stress in placentas from pregnant women living in radioactivity- and chemically-polluted regions. Toxicol. Lett., 2010, 196, 80-86.
[46]
Gresner, P.; Gromadzinska, J.; Wasowicz, W. Polymorphism of selected enzymes involved in detoxification and biotransformation in relation to lung cancer. Lung Cancer, 2007, 57, 1-25.
[47]
Hukkanen, J.; Lassila, A.; Paivarinta, K.; Valanne, S.; Sarpo, S.; Hakkola, J.; Pelkonen, O.; Raunio, H. Induction and regulation of xenobiotic-metabolizing cytochrome P450s in the human A549 lung adenocarcinoma cell line. Am. J. Respir. Cell Mol. Biol., 2000, 22, 360-366.
[48]
Neis, M.M.; Wendel, A.; Wiederholt, T.; Marquardt, Y.; Joussen, S.; Baron, J.M.; Merk, H.F. Expression and induction of cytochrome p450 isoenzymes in human skin equivalents. Skin Pharmacol. Physiol., 2010, 23, 29-39.
[49]
Harris, I.R.; Siefken, W.; Beck-Oldach, K.; Brandt, M.; Wittern, K.P.; Pollet, D. Comparison of activities dependent on glutathione S-transferase and cytochrome P-450 IA1 in cultured keratinocytes and reconstructed epidermal models. Skin Pharmacol. Appl. Skin Physiol., 2002, 15, 59-67.
[50]
Tsigelny, I.F.; Kouznetsova, V.L.; Pingle, S.C.; Kesari, S. bHLH Transcription factors inhibitors for cancer therapy: general features for in silico drug design. Curr. Med. Chem., 2014, 21, 3227-3243.
[51]
Watt, K.; Jess, T.J.; Kelly, S.M.; Price, N.C.; McEwan, I.J. Induced alpha-helix structure in the aryl hydrocarbon receptor transactivation domain modulates protein-protein interactions. Biochemistry, 2005, 44, 734-743.
[52]
Chambon, P. The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol. Endocrinol., 2005, 19, 1418-1428.
[53]
Timsit, Y.E.; Negishi, M. CAR and PXR: The xenobiotic-sensing receptors. Steroids, 2007, 72, 231-246.
[54]
Bertilsson, G.; Heidrich, J.; Svensson, K.; Asman, M.; Jendeberg, L.; Sydow-Backman, M.; Ohlsson, R.; Postlind, H.; Blomquist, P.; Berkenstam, A. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl. Acad. Sci. USA, 1998, 95, 12208-12213.
[55]
Maglich, J.M.; Parks, D.J.; Moore, L.B.; Collins, J.L.; Goodwin, B.; Billin, A.N.; Stoltz, C.A.; Kliewer, S.A.; Lambert, M.H.; Willson, T.M.; Moore, J.T. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J. Biol. Chem., 2003, 278, 17277-17283.
[56]
Tao, Z.; Gao, P.; Hoffman, D.W.; Liu, H.W. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif. Biochemistry, 2008, 47, 5804-5813.
[57]
McIlwrick, S.; Rechenberg, A.; Matthes, M.; Burgstaller, J.; Schwarzbauer, T.; Chen, A.; Touma, C. Genetic predisposition for high stress reactivity amplifies effects of early-life adversity. Psychoneuroendocrinology, 2016, 70, 85-97.
[58]
Qatanani, M.; Moore, D.D. CAR, the continuously advancing receptor, in drug metabolism and disease. Curr. Drug Metab., 2005, 6, 329-339.
[59]
Sueyoshi, T.; Kawamoto, T.; Zelko, I.; Honkakoski, P.; Negishi, M. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J. Biol. Chem., 1999, 274, 6043-6046.
[60]
Kumar, R.; Thompson, E.B. The structure of the nuclear hormone receptors. Steroids, 1999, 64, 310-319.
[61]
Scognamiglio, V.; Antonacci, A.; Patrolecco, L.; Lambreva, M.D.; Litescu, S.C.; Ghuge, S.A.; Rea, G. Analytical tools monitoring endocrine disrupting chemicals. Trends Anal. Chem., 2016, 80, 555-567.
[62]
Matouskova, P.; Vokral, I.; Lamka, J.; Skalova, L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol., 2016, 32, 481-491.
[63]
Klaunig, J.E.; Babich, M.A.; Baetcke, K.P.; Cook, J.C.; Corton, J.C.; David, R.M.; DeLuca, J.G.; Lai, D.Y.; McKee, R.H.; Peters, J.M.; Roberts, R.A.; Fenner-Crisp, P.A. PPARalpha agonist-induced rodent tumors: modes of action and human relevance. Crit. Rev. Toxicol., 2003, 33, 655-780.
[64]
Chen, Y.; Tang, Y.; Guo, C.; Wang, J.; Boral, D.; Nie, D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem. Pharmacol., 2012, 83, 1112-1126.
[65]
Richter, I.; Fidler, A. Marine invertebrate xenobiotic-activated nuclear receptors: Their application as sensor elements in high-throughput bioassays for marine bioactive compounds. Mar. Drugs, 2014, 12, 5590-5618.
[66]
Moreau, A.; Vilarem, M.J.; Maurel, P.; Pascussi, J.M. Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol. Pharmacol., 2008, 5, 35-41.
[67]
Raucy, J.L. Regulation of CYP3A4 expression in human hepatocytes by pharmaceuticals and natural products. Drug Metab. Dispos., 2003, 31, 533-539.
[68]
Ogu, C.C.; Maxa, J.L. Drug interactions due to cytochrome P450. Proc. (Baylor Univ. Med. Center), 2000, 13, 421-423.
[69]
Monostory, K.; Pascussi, J.M.; Kóbori, L.; Dvorak, Z. Hormonal regulation of CYP1A expression. Drug Metab. Rev., 2009, 41, 547-572.
[70]
Zhang, N. The role of endogenous aryl hydrocarbon receptor signaling in cardiovascular physiology. J. Cardiovasc. Dis. Res., 2011, 2, 91-95.
[71]
Murray, I.A.; Krishnegowda, G.; DiNatale, B.C.; Flaveny, C.; Chiaro, C.; Lin, J.M.; Sharma, A.K.; Amin, S.; Perdew, G.H. Development of a selective modulator of aryl hydrocarbon (Ah) receptor activity that exhibits anti-inflammatory properties. Chem. Res. Toxicol., 2010, 23, 955-966.
[72]
Murray, I.A.; Morales, J.L.; Flaveny, C.A.; DiNatale, B.C.; Chiaro, C.; Gowdahalli, K.; Amin, S.; Perdew, G.H. Evidence for ligand mediated selective modulation of aryl hydrocarbon receptor activity. Mol. Pharmacol., 2010, 77, 247-254.
[73]
Osburn, D.L.; Shao, G.; Seidel, H.M.; Schulman, I.G. Ligand-dependent degradation of retinoid X receptors does not require transcriptional activity or coactivator interactions. Mol. Cell. Biol., 2001, 21, 4909-4918.
[74]
Zhang, R.; Wang, Y.; Li, R.; Chen, G. Transcriptional factors mediating retinoic acid signals in the control of energy metabolism. Int. J. Mol. Sci., 2015, 16, 14210-14244.
[75]
Mutoh, S.; Osabe, M.; Inoue, K.; Moore, R.; Pedersen, L.; Perera, L.; Rebolloso, Y.; Sueyoshi, T.; Negishi, M. Dephosphorylation of threonine 38 is required for nuclear translocation and activation of human xenobiotic receptor CAR (NR1I3). J. Biol. Chem., 2009, 284, 34785-34792.
[76]
Dekeyser, J.G.; Omiecinski, C.J. Constitutive androstane receptor.In:Comprehensive Toxicology, 2nd ed; Vol. 2 2010
[77]
Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schutz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; Evans, R.M. The nuclear receptor superfamily: The second decade. Cell, 1995, 83, 835-839.
[78]
Mehvesh, M.; Wani, S.M. Polyphenols and human health- A review. Int. J. Pharma Bio Sci., 2013, 4, 338-360.
[79]
Fuentes, F.; Paredes, G.X.; Kong, A.T. Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr. Pharmacol. Rep., 2015, 1, 179-196.
[80]
Embrandiri, A.; Kiyasudeen, S.K.; Rupani, P.F.; Ibrahim, M.H. Environmental Xenobiotics and Its Effects on Natural Ecosystem.InPlant Responses to Xenobiotics; Singh, A.; Prasad, S.M.; Singh, R.P., Eds.; Springer Singapore: Singapore, 2016, pp. 1-18.
[81]
Debrauwer, L. Use of LC-MS/MS for xenobiotic metabolism studies in animals. Analusis, 2000, 28, 914-920.
[82]
Baron, J.M.; Wiederholt, T.; Heise, R.; Merk, H.F.; Bickers, D.R. Expression and function of cytochrome p450-dependent enzymes in human skin cells. Curr. Med. Chem., 2008, 15, 2258-2264.
[83]
Parkinson, A.; Mudra, D.R.; Johnson, C.; Dwyer, A.; Carroll, K.M. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol. Appl. Pharmacol., 2004, 199, 193-209.
[84]
Xue, J.; Zhao, Q.; Sharma, V.; Nguyen, L.P.; Lee, Y.N.; Pham, K.L.; Edderkaoui, M.; Pandol, S.J.; Park, W.; Habtezion, A. Aryl hydrocarbon receptor ligands in cigarette smoke induce production of interleukin-22 to promote pancreatic fibrosis in models of chronic pancreatitis. Gastroenterology, 2016, 151, 1206-1217.
[85]
Uppstad, H.; Osnes, G.H.; Cole, K.J.; Phillips, D.H.; Haugen, A.; Mollerup, S. Sex differences in susceptibility to PAHs is an intrinsic property of human lung adenocarcinoma cells. Lung Cancer, 2011, 71, 264-270.
[86]
Zhou, S.F. Polymorphism of human cytochrome P450 2D6 and its clinical signifi cance. part II. Clin. Pharmacokinet., 2009, 48, 761-804.
[87]
Klotz, U. Impact of CYP2C19 polymorphisms on the clinical action of proton pump inhibitors (PPIs). Eur. J. Clin. Pharmacol., 2009, 65, 1-2.
[88]
Wojnowski, L.; Kamdem, L.K. Clinical implications of CYP3A polymorphisms. Expert Opin. Drug Metab. Toxicol., 2006, 2, 171-182.
[89]
Wang, J. CYP3A polymorphisms and immunosuppressive drugs in solid-organ transplantation. Expert Rev. Mol. Diagn., 2009, 9, 383-390.
[90]
Shi, X.; Zhou, S.; Wang, Z.; Zhou, Z.; Wang, Z. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: A meta-analysis. Lung Cancer, 2008, 59, 155-163.
[91]
Vaissière, T.; Sawan, C.; Herceg, Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res. Rev. Mutat. Res., 2008, 659, 40-48.
[92]
Colvis, C.M. Epigenetic mechanisms and gene networks in the nervous system. J. Neurosci., 2005, 25, 10379-11089.
[93]
Vieira, I.; Sonnier, M.; Cresteil, T. Developmental expression of CYP2E1 in the human liver. Hypermethylation control of gene expression during the neonatal period. Eur. J. Biochem., 1996, 238, 476-483.
[94]
Anttila, S.; Hakkola, J.; Tuominen, P.; Elovaara, E. Husgafvel - Pursiainen, K.; Karjalainen, A.; Hirvonen, A.; Nurminen, T. Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer Res., 2003, 63, 8623-8628.
[95]
Ghotbi, R.; Gomez, A.; Milani, L.; Tybring, G.; Syvänen, A.C.; Bertilsson, L.; Ingelman-Sundberg, M.; Aklillu, E. Allele - specific expression and gene methylation in the control of CYP1A2 mRNA level in human livers. Pharmacogenomics J., 2009, 9, 208-217.
[96]
Pan, Y.Z.; Gao, W.; Yu, A.M. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab. Dispos., 2009, 37, 2112-2117.
[97]
Mohri, T.; Nakajima, M.; Fukami, T.; Takamiya, M.; Aoki, Y.; Yokoi, T. Human CYP2E1 is regulated by miR – 378. Biochem. Pharmacol., 2010, 79, 1045-1052.
[98]
Takagi, S.; Nakajima, M.; Mohri, T.; Yokoi, T. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J. Biol. Chem., 2008, 283, 9674-9680.
[99]
Scandlyn, M.J.; Stuart, E.C.; Rosengren, R.J. Sex-specific differences in CYP450 isoforms in humans. Expert Opin. Drug Metab. Toxicol., 2008, 4, 413-424.
[100]
Pavek, P.; Ceckova, M.; Staud, F. Variation of drug kinetics in pregnancy. Curr. Drug Metab., 2009, 10, 520-529.
[101]
Mitchell, S.C.; Smith, R.L.; Waring, R.H. The menstrual cycle and drug metabolism. Curr. Drug Metab., 2009, 10, 499-507.
[102]
Zordoky, B.N.; El-Kadi, A.O. Role of NF-kappaB in the regulation of cytochrome P450 enzymes. Curr. Drug Metab., 2009, 10, 164-178.
[103]
Morgan, E.T. Impact of infectious and infl ammatory disease on cytochrome P450 - mediated drug metabolism and pharmacokinetics. Clin. Pharmacol. Ther., 2009, 85, 434-438.
[104]
Croyle, M.A. Long - term virus - induced alterations of CYP3A - mediated drug metabolism: a look at the virology, immunology and molecular biology of a multi - faceted problem. Expert Opin. Drug Metab. Toxicol., 2009, 5, 1189-1211.
[105]
Robertson, G.R.; Liddle, C.; Clarke, S.J. Infl ammation and altered drug clearance in cancer: transcriptional repression of a human CYP3A4 transgene in tumor - bearing mice. Clin. Pharmacol. Ther., 2008, 83, 894-897.
[106]
Pearson, E.R. Pharmacogenetics in diabetes. Curr. Diab. Rep., 2009, 9, 172-181.
[107]
Carbone, V.; Velkov, T. Interaction of phthalates and phenoxy acid herbicide environmental pollutants with intestinal intracellular lipid binding proteins. Chem. Res. Toxicol., 2013, 26, 1240-1250.
[108]
Schmidt, J.V.; Bradfield, C.A. Ah receptor signaling pathways. Annu. Rev. Cell Dev. Biol., 1996, 12, 55-89.
[109]
Urquhart, B.L.; Tirona, R.G.; Kim, R.B. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: Implications for interindividual variability in response to drugs. J. Clin. Pharmacol., 2007, 47, 566-578.
[110]
Kliewer, S.A.; Goodwin, B.; Willson, T.M. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocr. Rev., 2002, 23, 687-702.
[111]
Quattrochi, L.C.; Guzelian, P.S. CYP3A regulation: from pharmacology to nuclear receptors. Drug Metab. Dispos., 2001, 29, 615-622.
[112]
Pavek, P.; Smutny, T. Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier. Drug Metab. Rev., 2014, 46, 19-32.
[113]
Satsu, H.; Hiura, Y.; Mochizuki, K.; Hamada, M.; Shimizu, M. Activation of pregnane X receptor and induction of MDR1 by dietary phytochemicals. J. Agric. Food Chem., 2008, 56, 5366-5373.
[114]
Burcham, P.C. An Introduction to Toxicology; Springer-Verlag: London, 2014.
[115]
Wang, H.; LeCluyse, E.L. Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes. Clin. Pharmacokinet., 2003, 42, 1331-1357.
[116]
Ueda, A.; Hamadeh, H.K.; Webb, H.K.; Yamamoto, Y.; Sueyoshi, T.; Afshari, C.A.; Lehmann, J.M.; Negishi, M. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol. Pharmacol., 2002, 61, 1-6.
[117]
Kast, H.R.; Goodwin, B.; Tarr, P.T.; Jones, S.A.; Anisfeld, A.M.; Stoltz, C.M.; Tontonoz, P.; Kliewer, S.; Willson, T.M.; Edwards, P.A. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem., 2002, 277, 2908-2915.
[118]
Assem, M.; Schuetz, E.G.; Leggas, M.; Sun, D.; Yasuda, K.; Reid, G.; Zelcer, N.; Adachi, M.; Strom, S.; Evans, R.M. Interactions xenobiotic metabolism, disposition, and regulation by receptors s67 between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice. J. Biol. Chem., 2004, 279, 2225-22250.
[119]
Wang, Y.M.; Ong, S.S.; Chai, S.C.; Chen, T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol., 2012, 8, 803-817.
[120]
Pan, Y.; Li, L.; Kim, G.; Ekins, S.; Wang, H.; Swaan, P.W. Identification and validation of novel human pregnane X receptor activators among prescribed drugs via ligand-based virtual screening. Drug Metab. Dispos., 2011, 39, 337-344.
[121]
Berlin, S.; Spieckermann, L.; Oswald, S.; Keiser, M.; Lumpe, S.; Ullrich, A.; Grube, M.; Hasan, M.; Venner, M.; Siegmund, W. Pharmacokinetics and pulmonary distribution of clarithromycin and rifampicin after concomitant and consecutive administration in foals. Mol. Pharm., 2016, 13, 1089-1099.
[122]
Ihunnah, C.A.; Jiang, M.; Xie, W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim. Biophys. Acta, 2011, 1812, 956-963.
[123]
Miller, T.W.; Isenberg, J.S.; Roberts, D.D. Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem. Rev., 2009, 109, 3099-3124.
[124]
Veldhoen, M.; Hirota, K.; Christensen, J.; O’Garra, A.; Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med., 2009, 206, 43-49.
[125]
Chawla, A.; Repa, J.J.; Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors and lipid physiology: Opening the X-files. Science, 2001, 294, 1866-1870.
[126]
Francis, G.A.; Fayard, E.; Picard, F.; Auwerx, J. Nuclear receptors and the control of metabolism. Annu. Rev. Physiol., 2003, 65, 261-311.
[127]
Huang, W.; Zhang, J.; Chua, S.S.; Qatanani, M.; Han, Y.; Granata, R.; Moore, D.D. Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proc. Natl. Acad. Sci. USA, 2003, 100, 4156-4161.
[128]
Assenat, E.; Gerbal-Chaloin, S.; Larrey, D.; Saric, J.; Fabre, J.M.; Maurel, P.; Vilarem, M.J.; Pascussi, J.M. Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance. Hepatology, 2004, 40, 951-960.
[129]
Maglich, J.M.; Watson, J.; McMillen, P.J.; Goodwin, B.; Willson, T.M.; Moore, J.T. The nuclear receptor CAR is a regulator of thyroid hormone metabolism during caloric restriction. J. Biol. Chem., 2004, 279, 19832-19838.
[130]
Qatanani, M.; Zhang, J.; Moore, D.D. Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism. Endocrinology, 2005, 146, 995-1002.
[131]
Gao, J.; Xie, W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol. Sci., 2012, 33, 552-558.
[132]
Repa, J.J.; Mangelsdorf, D.J. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu. Rev. Cell Dev. Biol., 2000, 16, 459-481.
[133]
Mackenzie, P.I.; Somogyi, A.A.; Miners, J.O. Advances in drug metabolism and pharmacogenetics research in Australia. Pharmacol. Res., 2017, 116, 7-19.
[134]
Hooper, M.J.; Ankley, G.T.; Cristol, D.A.; Maryoung, L.A.; Noyes, P.D.; Pinkerton, K.E. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environ. Toxicol. Chem., 2013, 32, 32-48.
[135]
Ma, X.; Idle, J.R.; Gonzalez, F.J. The pregnane X receptor: From bench to bedside. Expert Opin. Drug Metab. Toxicol., 2008, 4(7), 895-908.
[136]
Testa, B.; Pedretti, A.; Vistoli, G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov. Today, 2012, 17, 549-560.
[137]
Burcham, P.C. Acrolein and human disease: Untangling the knotty exposure scenarios accompanying several diverse disorders. Chem. Res. Toxicol., 2017, 30, 145-161.
[138]
Nishikawa, A.; Mori, Y.; Lee, I.S.; Tanaka, T.; Hirose, M. Cigarette smoking, metabolic activation and carcinogenesis. Curr. Drug Metab., 2004, 5, 363-373.
[139]
Kasai, H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res. Rev. Mutat. Res., 1997, 387, 147-163.
[140]
Geacintov, N.E.; Dedon, P.C. Abstracts, American Chemical Society Division of Chemical Toxicology, 224th ACS National Meeting, Boston, Massachusetts, August 18-22. Chem. Res. Toxicol., 2002, 15, 1652-1681.
[141]
Singh, S.; Vrishni, S.; Singh, B.K.; Rahman, I.; Kakkar, P. Nrf2-ARE stress response mechanism: A control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic. Res., 2010, 44, 1267-1288.
[142]
Fruchart, J.C.; Duriez, P.; Staels, B. Peroxisome proliterator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr. Opin. Lipidol., 1999, 10, 245-258.
[143]
Lai, D.Y. Rodent carcinogenicity of peroxisome proliferators and issues on human relevance. J. Environ. Sci. Health C, 2004, 22, 37-55.
[144]
Guengerich, F.P. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem. Biol. Interact., 1997, 106, 161-182.
[145]
Jalas, J.R.; Hecht, S.S.; Murphy, S.E. Cytochrome P450 enzymes as catalysts of metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco specific carcinogen. Chem. Res. Toxicol., 2005, 18, 95-110.
[146]
Daly, A.K. Pharmacogenetics and human genetic polymorphisms. Biochem. J., 2010, 429, 435-449.
[147]
Johansson, I.; Ingelman-Sundberg, M. Genetic polymorphism and toxicology-with emphasis on cytochrome P450. Toxicol. Sci., 2011, 120, 1-13.
[148]
Llerena, A.; Naranjo, M.E.G.; Rodrigues-Soares, F.; Penas-Lledó, E.M.; Fariñas, H.; Tarazona-Santos, E. Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin. Drug Metab. Toxicol., 2014, 10, 1569-1583.
[149]
Cox, J.A.; Fellows, M.D.; Hashizume, T.; White, P.A. The utility of metabolic activation mixtures containing human hepatic post-mitochondrial supernatant (S9) for in vitro genetic toxicity assessment. Mutagenesis, 2016, 31, 117-130.
[150]
Nemery, B.; Bast, A.; Behr, J.; Borm, P.J.A.; Bourke, S.J.; Camus, P.; De Vuyst, P.; Jansen, H.M.; Kinnula, V.L.; Lison, D.; Pelkonen, O.; Saltini, C. Interstitial lung disease induced by exogenous agents: factors governing susceptibility. Eur. Resp. J., 2001, 18, 30-42.
[151]
Honkakoski, P.; Sueyoshi, T.; Negishi, M. Drug-activated nuclear receptors CAR and PXR. Ann. Med., 2003, 35, 172-182.
[152]
Gibson, G.G.; Plant, N.J.; Swales, K.E.; Ayrton, A.; El-Sankary, W. Receptor-dependent transcriptional activation of cytochrome P4503A genes: Induction mechanisms, species differences and interindividual variation in man. Xenobiotica, 2002, 32, 165-206.
[153]
Epel, D.; Luckenbach, T.; Stevenson, C.N.; MacManus-Spencer, L.A.; Hamdoun, A.; Smital, T. Efflux transporters: Newly appreciated roles in protection against pollutants. Environ. Sci. Technol., 2008, 42(11), 3914-3920.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy