General Review Article

蜂蜜:伤口管理中有效的再生医学产品

卷 26, 期 27, 2019

页: [5230 - 5240] 页: 11

弟呕挨: 10.2174/0929867325666180510141824

价格: $65

摘要

蜂蜜已成功用于治疗包括烧伤和不愈合伤口在内的多种损伤。 它充当具有抗/促炎特性的抗菌和抗生物膜剂。 但是,除了这些传统特性外,最近的证据表明,蜂蜜也是伤口愈合中的一种免疫调节剂,并且含有几种蜜蜂和植物来源的成分,可以加速伤口愈合和组织再生过程。 确定它们的确切作用机制可以更好地了解蜂蜜的治疗特性,并促进其更广泛地转化为临床实践。 这篇综述将讨论在伤口处理中使用蜂蜜的生理基础,其当前的临床用途,以及蜂蜜生物活性化合物在皮肤再生医学和组织重塑中的潜在作用。

关键词: 蜂蜜,伤口修复,再生医学,组织,免疫调节剂,伤口愈合。

« Previous
[1]
Martinotti, S.; Ranzato, E. Propolis: a new frontier for wound healing? Burns Trauma, 2015, 3, 9.
[http://dx.doi.org/10.1186/s41038-015-0010-z] [PMID: 27574655]
[2]
Kwakman, P.H.S.; te Velde, A.A.; de Boer, L.; Speijer, D.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J. How honey kills bacteria. FASEB J., 2010, 24(7), 2576-2582.
[http://dx.doi.org/10.1096/fj.09-150789] [PMID: 20228250]
[3]
Zainol, M.I.; Yusoff, K.M.; Yusof, M.Y.M. Antibacterial activity of selected Malaysian honey; Bmc Complem. Altern. M., 2013, p. 13.
[4]
Irish, J.; Blair, S.; Carter, D.A. The antibacterial activity of honey derived from Australian flora. PLoS One, 2011, 6(3)e18229
[http://dx.doi.org/10.1371/journal.pone.0018229] [PMID: 21464891]
[5]
Kuncic, M.K.; Jaklic, D.; Lapanje, A.; Gunde-Cimerman, N. Antibacterial and antimycotic activities of Slovenian honeys. Br. J. Biomed. Sci., 2012, 69(4), 154-158.
[http://dx.doi.org/10.1080/09674845.2012.12069144] [PMID: 23304790]
[6]
Kwakman, P.H.S.; Te Velde, A.A.; de Boer, L.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J. Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS One, 2011, 6(3)e17709
[http://dx.doi.org/10.1371/journal.pone.0017709] [PMID: 21394213]
[7]
Liu, M.Y.; Cokcetin, N.N.; Lu, J.; Turnbull, L.; Carter, D.A.; Whitchurch, C.B.; Harry, E.J. Rifampicin-manuka honey combinations are superior to other antibiotic-manuka honey combinations in eradicating Staphylococcus aureus Biofilms. Front. Microbiol., 2018, 8, 2653.
[http://dx.doi.org/10.3389/fmicb.2017.02653] [PMID: 29375518]
[8]
Majtan, J. Honey: an immunomodulator in wound healing. Wound Repair Regen., 2014, 22(2), 187-192.
[http://dx.doi.org/10.1111/wrr.12117] [PMID: 24612472]
[9]
Sojka, M.; Valachova, I.; Bucekova, M.; Majtan, J. Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm. J. Med. Microbiol., 2016, 65(4), 337-344.
[http://dx.doi.org/10.1099/jmm.0.000227] [PMID: 26861950]
[10]
Pontes, M.; Marques, J.C.; Câmara, J.S. Screening of volatile composition from Portuguese multifloral honeys using headspace solid-phase microextraction-gas chromatography-quadrupole mass spectrometry. Talanta, 2007, 74(1), 91-103.
[http://dx.doi.org/10.1016/j.talanta.2007.05.037] [PMID: 18371617]
[11]
da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.; Fett, R. Honey: chemical composition, stability and authenticity. Food Chem., 2016, 196, 309-323.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.051] [PMID: 26593496]
[12]
Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: a review. Iran. J. Basic Med. Sci., 2013, 16(6), 731-742.
[PMID: 23997898]
[13]
Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci., 2011, 12(12), 9514-9532.
[http://dx.doi.org/10.3390/ijms12129514] [PMID: 22272147]
[14]
Olaitan, P.B.; Adeleke, O.E.; Ola, I.O. Honey: a reservoir for microorganisms and an inhibitory agent for microbes. Afr. Health Sci., 2007, 7(3), 159-165.
[http://dx.doi.org/10.555/afhs.2007.7.3.159] [PMID: 18052870]
[15]
Kwakman, P.H.; Zaat, S.A. Antibacterial components of honey. IUBMB Life, 2012, 64(1), 48-55.
[http://dx.doi.org/10.1002/iub.578] [PMID: 22095907]
[16]
Adcock, D. The effect of catalase on the inhibine and peroxide values of various honeys. J. Apic. Res., 1962, 1, 38-40.
[http://dx.doi.org/10.1080/00218839.1962.11100047]
[17]
White, J.W., Jr; Subers, M.H.; Schepartz, A.I. The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim. Biophys. Acta, 1963, 73, 57-70.
[http://dx.doi.org/10.1016/0926-6569(63)90108-1] [PMID: 14000328]
[18]
Mandal, M.D.; Mandal, S. Honey: its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed., 2011, 1(2), 154-160.
[http://dx.doi.org/10.1016/S2221-1691(11)60016-6] [PMID: 23569748]
[19]
Molan, P.C. The antibacterial activity of honey. 1. The nature of the antibacterial activity. Bee World, 1992, 73, 5-28.
[http://dx.doi.org/10.1080/0005772X.1992.11099109]
[20]
Simon, A.; Traynor, K.; Santos, K.; Blaser, G.; Bode, U.; Molan, P. Medical honey for wound care--still the ‘latest resort’? Evid. Based Complement. Alternat. Med., 2009, 6(2), 165-173.
[http://dx.doi.org/10.1093/ecam/nem175] [PMID: 18955301]
[21]
Schepartz, A.I.; Subers, M.H. The glucose oxidase of honey. I. Purification and some general properties of the enzyme. Biochim. Biophys. Acta, 1964, 85, 228-237.
[PMID: 14212969]
[22]
White, J.W.; Subers, M.H. Studies on honey inhibine. Effect of heat. J. Apic. Res., 1964, 3, 45-50.
[http://dx.doi.org/10.1080/00218839.1964.11100082]
[23]
White, J.W.; Subers, M.H. Studies on honey inhibine. Destruction of the peroxide accumulation system by light. J. Food Sci., 1964, 29, 819-828.
[http://dx.doi.org/10.1111/j.1365-2621.1964.tb00455.x]
[24]
Huidobro, J.F.; Sánchez, M.P.; Muniategui, S.; Sancho, M.T. Precise method for the measurement of catalase activity in honey. J. AOAC Int., 2005, 88(3), 800-804.
[PMID: 16001855]
[25]
Weigel, K.U.; Opitz, T.; Henle, T. Studies on the occurrence and formation of 1,2-dicarbonyls in honey. Eur. Food Res. Technol., 2004, 218(2), 147-151.
[http://dx.doi.org/10.1007/s00217-003-0814-0]
[26]
Adams, C.J.; Manley-Harris, M.; Molan, P.C. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res., 2009, 344(8), 1050-1053.
[http://dx.doi.org/10.1016/j.carres.2009.03.020] [PMID: 19368902]
[27]
Roberts, A.E.L.; Brown, H.L.; Jenkins, R.E. On the antibacterial effects of manuka honey: mechanistic insights. Res. Rep. Biol., 2015, 6, 215-224.
[28]
Kwakman, P.H.; Te Velde, A.A.; de Boer, L.; Vandenbroucke-Grauls, C.M.; Zaat, S.A. Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS One, 2011, 6(3)e17709
[http://dx.doi.org/10.1371/journal.pone.0017709] [PMID: 21394213]
[29]
Roberts, A.E.L.; Maddocks, S.E.; Cooper, R.A. Manuka honey reduces the motility of Pseudomonas aeruginosa by suppression of flagella-associated genes. J. Antimicrob. Chemother., 2015, 70(3), 716-725.
[http://dx.doi.org/10.1093/jac/dku448] [PMID: 25404649]
[30]
Rabie, E.; Serem, J.C.; Oberholzer, H.M.; Gaspar, A.R.M.; Bester, M.J. How methylglyoxal kills bacteria: An ultrastructural study. Ultrastruct. Pathol., 2016, 40(2), 107-111.
[http://dx.doi.org/10.3109/01913123.2016.1154914] [PMID: 26986806]
[31]
Fujiwara, S.; Imai, J.; Fujiwara, M.; Yaeshima, T.; Kawashima, T.; Kobayashi, K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem., 1990, 265(19), 11333-11337.
[PMID: 2358464]
[32]
Klaudiny, J.; Albert, S.; Bachanová, K.; Kopernický, J.; Simúth, J. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem. Mol. Biol., 2005, 35(1), 11-22.
[http://dx.doi.org/10.1016/j.ibmb.2004.09.007] [PMID: 15607651]
[33]
Mundo, M.A.; Padilla-Zakour, O.I.; Worobo, R.W. Growth inhibition of foodborne pathogens and food spoilage organisms by select raw honeys. Int. J. Food Microbiol., 2004, 97(1), 1-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.025] [PMID: 15527912]
[34]
Weston, R.J.; Brocklebank, L.K.; Lu, Y.R. Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chem., 2000, 70(4), 427-435.
[http://dx.doi.org/10.1016/S0308-8146(00)00127-8]
[35]
Alvarez-Suarez, J.M.; Tulipani, S.; Díaz, D.; Estevez, Y.; Romandini, S.; Giampieri, F.; Damiani, E.; Astolfi, P.; Bompadre, S.; Battino, M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol., 2010, 48(8-9), 2490-2499.
[http://dx.doi.org/10.1016/j.fct.2010.06.021] [PMID: 20558231]
[36]
Silici, S.; Sagdic, O.; Ekici, L. Total phenolic content, antiradical, antioxidant and antimicrobial activities of Rhododendron honeys. Food Chem., 2010, 121(1), 238-243.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.078]
[37]
Brudzynski, K.; Abubaker, K.; Miotto, D. Unraveling a mechanism of honey antibacterial action: polyphenol/H2O2-induced oxidative effect on bacterial cell growth and on DNA degradation. Food Chem., 2012, 133(2), 329-336.
[http://dx.doi.org/10.1016/j.foodchem.2012.01.035] [PMID: 25683403]
[38]
Merckoll, P.; Jonassen, T.O.; Vad, M.E.; Jeansson, S.L.; Melby, K.K. Bacteria, biofilm and honey: a study of the effects of honey on ‘planktonic’ and biofilm-embedded chronic wound bacteria. Scand. J. Infect. Dis., 2009, 41(5), 341-347.
[http://dx.doi.org/10.1080/00365540902849383] [PMID: 19308800]
[39]
Alandejani, T.; Marsan, J.; Ferris, W.; Slinger, R.; Chan, F. Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngol. Head Neck Surg., 2009, 141(1), 114-118.
[http://dx.doi.org/10.1016/j.otohns.2009.01.005] [PMID: 19559969]
[40]
Maddocks, S.E.; Lopez, M.S.; Rowlands, R.S.; Cooper, R.A. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology, 2012, 158(Pt 3), 781-790.
[http://dx.doi.org/10.1099/mic.0.053959-0] [PMID: 22294681]
[41]
Jervis-Bardy, J.; Foreman, A.; Bray, S.; Tan, L.; Wormald, P.J. Methylglyoxal-infused honey mimics the anti-Staphylococcus aureus biofilm activity of manuka honey: potential implication in chronic rhinosinusitis. Laryngoscope, 2011, 121(5), 1104-1107.
[http://dx.doi.org/10.1002/lary.21717] [PMID: 21520131]
[42]
Jenkins, R.; Burton, N.; Cooper, R. Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. J. Antimicrob. Chemother., 2014, 69(3), 603-615.
[http://dx.doi.org/10.1093/jac/dkt430] [PMID: 24176984]
[43]
Lee, J.H.; Park, J.H.; Kim, J.A.; Neupane, G.P.; Cho, M.H.; Lee, C.S.; Lee, J. Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157:H7. Biofouling, 2011, 27(10), 1095-1104.
[http://dx.doi.org/10.1080/08927014.2011.633704] [PMID: 22047137]
[44]
Truchado, P.; Lopez-Galvez, F.; Gil, M.I.; Tomas-Barberan, F.A.; Allende, A. Quorum sensing inhibitory and antimicrobial activities of honeys and the relationship with individual phenolics. Food Chem., 2009, 115(4), 1337-1344.
[http://dx.doi.org/10.1016/j.foodchem.2009.01.065]
[45]
Majtan, J.; Bohova, J.; Horniackova, M.; Klaudiny, J.; Majtan, V. Anti-biofilm effects of honey against wound pathogens Proteus mirabilis and Enterobacter cloacae. Phytother. Res., 2014, 28(1), 69-75.
[http://dx.doi.org/10.1002/ptr.4957] [PMID: 23494861]
[46]
Ndayisaba, G.; Bazira, L.; Habonimana, E. Treatment of wounds with honey. 40 cases. Presse Med., 1992, 21(32), 1516-1518.
[PMID: 1465374]
[47]
Thamboo, A.; Mulholland, G.; Matthews, K.; Ayoub, N.; Anderson, D. Objective and subjective scar aesthetics with topical Manuka honey post-thyroidectomy: A randomized control study. World J. Otorhinolaryngol Head Neck Surg., 2016, 2(4), 203-207.
[http://dx.doi.org/10.1016/j.wjorl.2016.07.003] [PMID: 29204567]
[48]
Molan, P.C. The role of honey in the management of wounds. J. Wound Care, 1999, 8(8), 415-418.
[http://dx.doi.org/10.12968/jowc.1999.8.8.25904] [PMID: 10808853]
[49]
Mellin, T.N.; Mennie, R.J.; Cashen, D.E.; Ronan, J.J.; Capparella, J.; James, M.L.; Disalvo, J.; Frank, J.; Linemeyer, D.; Gimenez-Gallego, G. Acidic fibroblast growth factor accelerates dermal wound healing. Growth Factors, 1992, 7(1), 1-14.
[http://dx.doi.org/10.3109/08977199209023933] [PMID: 1380253]
[50]
Burdon, R.H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med., 1995, 18(4), 775-794.
[http://dx.doi.org/10.1016/0891-5849(94)00198-S] [PMID: 7750801]
[51]
van den Berg, A.J.; van den Worm, E.; van Ufford, H.C.; Halkes, S.B.; Hoekstra, M.J.; Beukelman, C.J. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. J. Wound Care, 2008, 17(4), 172-174, 176-178.
[http://dx.doi.org/10.12968/jowc.2008.17.4.28839] [PMID: 18494436]
[52]
Leong, A.G.; Herst, P.M.; Harper, J.L. Indigenous New Zealand honeys exhibit multiple anti-inflammatory activities. Innate Immun., 2012, 18(3), 459-466.
[http://dx.doi.org/10.1177/1753425911422263] [PMID: 21978989]
[53]
Hussein, S.Z.; Mohd Yusoff, K.; Makpol, S.; Mohd Yusof, Y.A. Gelam honey inhibits the production of proinflammatory, mediators NO, PGE(2), TNF-α, and IL-6 in carrageenan-induced acute paw edema in rats. Evid. Based Complement. Alternat. Med., 2012.2012109636
[http://dx.doi.org/10.1155/2012/109636] [PMID: 22919407]
[54]
Majtan, J.; Bohova, J.; Garcia-Villalba, R.; Tomas-Barberan, F.A.; Madakova, Z.; Majtan, T.; Majtan, V.; Klaudiny, J. Fir honeydew honey flavonoids inhibit TNF-α-induced MMP-9 expression in human keratinocytes: a new action of honey in wound healing. Arch. Dermatol. Res., 2013, 305(7), 619-627.
[http://dx.doi.org/10.1007/s00403-013-1385-y] [PMID: 23812412]
[55]
Majtan, J.; Kumar, P.; Majtan, T.; Walls, A.F.; Klaudiny, J. Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. Exp. Dermatol., 2010, 19(8), e73-e79.
[http://dx.doi.org/10.1111/j.1600-0625.2009.00994.x] [PMID: 19845754]
[56]
Owoyele, B.V.; Oladejo, R.O.; Ajomale, K.; Ahmed, R.O.; Mustapha, A. Analgesic and anti-inflammatory effects of honey: the involvement of autonomic receptors. Metab. Brain Dis., 2014, 29(1), 167-173.
[http://dx.doi.org/10.1007/s11011-013-9458-3] [PMID: 24318481]
[57]
Tonks, A.J.; Cooper, R.A.; Jones, K.P.; Blair, S.; Parton, J.; Tonks, A. Honey stimulates inflammatory cytokine production from monocytes. Cytokine, 2003, 21(5), 242-247.
[http://dx.doi.org/10.1016/S1043-4666(03)00092-9] [PMID: 12824009]
[58]
Timm, M.; Bartelt, S.; Hansen, E.W. Immunomodulatory effects of honey cannot be distinguished from endotoxin. Cytokine, 2008, 42(1), 113-120.
[http://dx.doi.org/10.1016/j.cyto.2008.01.005] [PMID: 18313938]
[59]
Gordillo, G.M.; Sen, C.K. Revisiting the essential role of oxygen in wound healing. Am. J. Surg., 2003, 186(3), 259-263.
[http://dx.doi.org/10.1016/S0002-9610(03)00211-3] [PMID: 12946829]
[60]
Estevinho, L.; Pereira, A.P.; Moreira, L.; Dias, L.G.; Pereira, E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol., 2008, 46(12), 3774-3779.
[http://dx.doi.org/10.1016/j.fct.2008.09.062] [PMID: 18940227]
[61]
Brudzynski, K.; Miotto, D. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem., 2011, 127(3), 1023-1030.
[http://dx.doi.org/10.1016/j.foodchem.2011.01.075] [PMID: 25214092]
[62]
Martinotti, S.; Calabrese, G.; Ranzato, E. Honeydew honey: biological effects on skin cells. Mol. Cell. Biochem., 2017, 435(1-2), 185-192.
[http://dx.doi.org/10.1007/s11010-017-3067-0] [PMID: 28497368]
[63]
Ranzato, E.; Martinotti, S.; Burlando, B. Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: comparison among different honeys. Wound Repair Regen., 2012, 20(5), 778-785.
[http://dx.doi.org/10.1111/j.1524-475X.2012.00825.x] [PMID: 22882448]
[64]
Tonks, A.J.; Dudley, E.; Porter, N.G.; Parton, J.; Brazier, J.; Smith, E.L.; Tonks, A.A. 5.8-kDa component of manuka honey stimulates immune cells via TLR4. J. Leukoc. Biol., 2007, 82(5), 1147-1155.
[http://dx.doi.org/10.1189/jlb.1106683] [PMID: 17675558]
[65]
Gannabathula, S.; Skinner, M.A.; Rosendale, D.; Greenwood, J.M.; Mutukumira, A.N.; Steinhorn, G.; Stephens, J.; Krissansen, G.W.; Schlothauer, R.C. Arabinogalactan proteins contribute to the immunostimulatory properties of New Zealand honeys. Immunopharmacol. Immunotoxicol., 2012, 34(4), 598-607.
[http://dx.doi.org/10.3109/08923973.2011.641974] [PMID: 22212104]
[66]
Chaudhary, A.; Bag, S.; Barui, A.; Banerjee, P.; Chatterjee, J. Honey dilution impact on in vitro wound healing: Normoxic and hypoxic condition. Wound Repair Regen., 2015, 23(3), 412-422.
[http://dx.doi.org/10.1111/wrr.12297] [PMID: 25845442]
[67]
Ahmed, A.; Khan, R.A.; Azim, M.K.; Saeed, S.A.; Mesaik, M.A.; Ahmed, S.; Imran, I. Effect of natural honey on human platelets and blood coagulation proteins. Pak. J. Pharm. Sci., 2011, 24(3), 389-397.
[PMID: 21715274]
[68]
Bucekova, M.; Sojka, M.; Valachova, I.; Martinotti, S.; Ranzato, E.; Szep, Z.; Majtan, V.; Klaudiny, J.; Majtan, J. Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo. Sci. Rep., 2017, 7(1), 7340.
[http://dx.doi.org/10.1038/s41598-017-07494-0] [PMID: 28779102]
[69]
Valachova, I.; Bucekova, M.; Majtan, J. Quantification of bee-derived peptide defensin-1 in honey by competitive enzyme-linked immunosorbent assay, a new approach in honey quality control. Czech J. Food Sci., 2016, 34(3), 233-243.
[http://dx.doi.org/10.17221/422/2015-CJFS]
[70]
Horniackova, M.; Bucekova, M.; Valachova, I.; Majtan, J. Effect of gamma radiation on the antibacterial and antibiofilm activity of honeydew honey. Eur. Food Res. Technol., 2017, 243(1), 81-88.
[http://dx.doi.org/10.1007/s00217-016-2725-x]
[71]
Kamaratos, A.V.; Tzirogiannis, K.N.; Iraklianou, S.A.; Panoutsopoulos, G.I.; Kanellos, I.E.; Melidonis, A.I. Manuka honey-impregnated dressings in the treatment of neuropathic diabetic foot ulcers. Int. Wound J., 2014, 11(3), 259-263.
[http://dx.doi.org/10.1111/j.1742-481X.2012.01082.x] [PMID: 22985336]
[72]
Biglari, B. vd Linden, P.H.; Simon, A.; Aytac, S.; Gerner, H.J.; Moghaddam, A. Use of Medihoney as a non-surgical therapy for chronic pressure ulcers in patients with spinal cord injury. Spinal Cord, 2012, 50(2), 165-169.
[http://dx.doi.org/10.1038/sc.2011.87] [PMID: 21931331]
[73]
Gethin, G.; Cowman, S. Manuka honey vs. hydrogel--a prospective, open label, multicentre, randomised controlled trial to compare desloughing efficacy and healing outcomes in venous ulcers. J. Clin. Nurs., 2009, 18(3), 466-474.
[http://dx.doi.org/10.1111/j.1365-2702.2008.02558.x] [PMID: 18752540]
[74]
Imran, M.; Hussain, M.B.; Baig, M. A randomized controlled clinical trial of honey-impregnated dressing for treating diabetic foot ulcer. J. Coll. Physicians Surg. Pak., 2015, 25(10), 721-725.
[PMID: 26454386]
[75]
Mayer, A.; Slezak, V.; Takac, P.; Olejnik, J.; Majtan, J. Treatment of non-healing leg ulcers with honeydew honey. J. Tissue Viability, 2014, 23(3), 94-97.
[http://dx.doi.org/10.1016/j.jtv.2014.08.001] [PMID: 25187187]
[76]
Efem, S.E. Clinical observations on the wound healing properties of honey. Br. J. Surg., 1988, 75(7), 679-681.
[http://dx.doi.org/10.1002/bjs.1800750718] [PMID: 3416123]
[77]
Subrahmanyam, M. Early tangential excision and skin grafting of moderate burns is superior to honey dressing: a prospective randomised trial. Burns, 1999, 25(8), 729-731.
[http://dx.doi.org/10.1016/S0305-4179(99)00063-7] [PMID: 10630854]
[78]
Subrahmanyam, M. Topical application of honey for burn wound treatment - an overview. Ann. Burns Fire Disasters, 2007, 20(3), 137-139.
[PMID: 21991084]
[79]
Dart, A.J.; Bischofberger, A.S.; Dart, C.M.; Jeffcott, L.B. A review of research into second intention equine wound healing using manuka honey: Current recommendations and future applications. Equine Vet. Educ., 2015, 27(12), 658-664.
[http://dx.doi.org/10.1111/eve.12379]
[80]
Jastrzębska-Stojko, Z.; Stojko, R.; Rzepecka-Stojko, A.; Kabała-Dzik, A.; Stojko, J. Biological activity of propolis-honey balm in the treatment of experimentally-evoked burn wounds. Molecules, 2013, 18(11), 14397-14413.
[http://dx.doi.org/10.3390/molecules181114397] [PMID: 24284491]
[81]
Carter, D.A.; Blair, S.E.; Cokcetin, N.N.; Bouzo, D.; Brooks, P.; Schothauer, R.; Harry, E.J. Therapeutic manuka honey: no longer so alternative. Front. Microbiol., 2016, 7, 569.
[http://dx.doi.org/10.3389/fmicb.2016.00569] [PMID: 27148246]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy