Review Article

炎症的代谢途径:柠檬酸盐途径及其作为治疗靶点的潜力

卷 26, 期 40, 2019

页: [7104 - 7116] 页: 13

弟呕挨: 10.2174/0929867325666180510124558

价格: $65

摘要

炎症中发生重要的代谢变化,以响应细胞的新的能量需求。线粒体不仅用于产生ATP,而且还用于提供底物,例如柠檬酸盐,以产生促炎分子。在这种情况下,大多数柠檬酸盐从克雷布斯循环转移并进入“柠檬酸盐途径”,从而导致线粒体柠檬酸盐载体(CIC)将柠檬酸盐输出到细胞质中,然后将其裂解为乙酰辅酶A和草酰乙酸。由ATP柠檬酸盐裂解酶裂解(ACLY)。乙酰辅酶A用于生产PGE2和草酰乙酸,以生产NO和ROS生产所需的NADPH。另外,胞质柠檬酸盐也提供衣康酸酯合成的前体。柠檬酸盐衍生的衣康酸酯通过调节炎性介质的合成而充当炎症的负调节剂。不同合成和天然分子对CIC或ACLY的抑制作用会导致NO,ROS和PGE2水平的降低,这表明柠檬酸途径可能是炎症中需要解决的新目标。在唐氏综合症中观察到的氧化应激和炎性疾病中也可以获得有益效果。

关键词: 柠檬酸盐途径,线粒体柠檬酸盐载体,ATP柠檬酸盐裂解酶,炎症,抑制作用,ROS,NO,PGE2。

[1]
Waguri-Nagaya, Y.; Otsuka, T.; Sugimura, I.; Matsui, N.; Asai, K.; Nakajima, K.; Tada, T.; Akiyama, S.; Kato, T. Synovial inflammation and hyperplasia induced by gliostatin/platelet-derived endothelial cell growth factor in rabbit knees. Rheumatol. Int., 2000, 20(1), 13-19.
[http://dx.doi.org/10.1007/s002960000067] [PMID: 11149655]
[2]
O’Neill, L.A.; Hardie, D.G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature, 2013, 493(7432), 346-355.
[http://dx.doi.org/10.1038/nature11862] [PMID: 23325217]
[3]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[4]
Chandel, N.S. Mitochondria as signaling organelles. BMC Biol., 2014, 12, 34.
[http://dx.doi.org/10.1186/1741-7007-12-34] [PMID: 24884669]
[5]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[6]
Metallo, C.M.; Vander Heiden, M.G. Metabolism strikes back: metabolic flux regulates cell signaling. Genes Dev., 2010, 24(24), 2717-2722.
[http://dx.doi.org/10.1101/gad.2010510] [PMID: 21159812]
[7]
Nazaret, C.; Heiske, M.; Thurley, K.; Mazat, J.P. Mitochondrial energetic metabolism: a simplified model of TCA cycle with ATP production. J. Theor. Biol., 2009, 258(3), 455-464.
[http://dx.doi.org/10.1016/j.jtbi.2008.09.037] [PMID: 19007794]
[8]
Iacobazzi, V.; Infantino, V. Citrate - new functions for an old metabolite. Biol. Chem., 2014, 395(4), 387-399.
[http://dx.doi.org/10.1515/hsz-2013-0271] [PMID: 24445237]
[9]
Ryan, D.G.; O’Neill, L.A.J. Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Lett., 2017, 591(19), 2992-3006.
[http://dx.doi.org/10.1002/1873-3468.12744] [PMID: 28685841]
[10]
Iacobazzi, V.; Infantino, V.; Castegna, A.; Menga, A.; Palmieri, E.M.; Convertini, P.; Palmieri, F. Mitochondrial carriers in inflammation induced by bacterial endotoxin and cytokines. Biol. Chem., 2017, 398(3), 303-317.
[http://dx.doi.org/10.1515/hsz-2016-0260] [PMID: 27727142]
[11]
Jha, A.K.; Huang, S.C.; Sergushichev, A.; Lampropoulou, V.; Ivanova, Y.; Loginicheva, E.; Chmielewski, K.; Stewart, K.M.; Ashall, J.; Everts, B.; Pearce, E.J.; Driggers, E.M.; Artyomov, M.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3), 419-430.
[http://dx.doi.org/10.1016/j.immuni.2015.02.005] [PMID: 25786174]
[12]
Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; O’Neill, L.A. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-242.
[http://dx.doi.org/10.1038/nature11986] [PMID: 23535595]
[13]
Infantino, V.; Convertini, P.; Cucci, L.; Panaro, M.A.; Di Noia, M.A.; Calvello, R.; Palmieri, F.; Iacobazzi, V. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J., 2011, 438(3), 433-436.
[http://dx.doi.org/10.1042/BJ20111275] [PMID: 21787310]
[14]
Infantino, V.; Iacobazzi, V.; Palmieri, F.; Menga, A. ATP-citrate lyase is essential for macrophage inflammatory response. Biochem. Biophys. Res. Commun., 2013, 440(1), 105-111.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.037] [PMID: 24051091]
[15]
Infantino, V.; Iacobazzi, V.; Menga, A.; Avantaggiati, M.L.; Palmieri, F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochim. Biophys. Acta, 2014, 1839(11), 1217-1225.
[http://dx.doi.org/10.1016/j.bbagrm.2014.07.013] [PMID: 25072865]
[16]
Sharif, O.; Bolshakov, V.N.; Raines, S.; Newham, P.; Perkins, N.D. Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol., 2007, 8, 1.
[http://dx.doi.org/10.1186/1471-2172-8-1] [PMID: 17222336]
[17]
Assmann, N.; O’Brien, K.L.; Donnelly, R.P.; Dyck, L.; Zaiatz-Bittencourt, V.; Loftus, R.M.; Heinrich, P.; Oefner, P.J.; Lynch, L.; Gardiner, C.M.; Dettmer, K.; Finlay, D.K. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat. Immunol., 2017, 18(11), 1197-1206.
[http://dx.doi.org/10.1038/ni.3838] [PMID: 28920951]
[18]
Infantino, V.; Iacobazzi, V.; De Santis, F.; Mastrapasqua, M.; Palmieri, F. Transcription of the mitochondrial citrate carrier gene: role of SREBP-1, upregulation by insulin and downregulation by PUFA. Biochem. Biophys. Res. Commun., 2007, 356(1), 249-254.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.114] [PMID: 17350599]
[19]
Moon, Y.A.; Park, S.W.; Kim, K.S. Characterization of cis-acting elements in the rat ATP citrate-lyase gene promoter. Exp. Mol. Med., 2002, 34(1), 60-68.
[http://dx.doi.org/10.1038/emm.2002.9] [PMID: 11989980]
[20]
Babior, B.M. NADPH oxidase. Curr. Opin. Immunol., 2004, 16(1), 42-47.
[http://dx.doi.org/10.1016/j.coi.2003.12.001] [PMID: 14734109]
[21]
Lee, I.T.; Yang, C.M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem. Pharmacol., 2012, 84(5), 581-590.
[http://dx.doi.org/10.1016/j.bcp.2012.05.005] [PMID: 22587816]
[22]
Rodríguez, M.; Domingo, E.; Municio, C.; Alvarez, Y.; Hugo, E.; Fernández, N.; Sánchez Crespo, M. Polarization of the innate immune response by prostaglandin E2: a puzzle of receptors and signals. Mol. Pharmacol., 2014, 85(1), 187-197.
[http://dx.doi.org/10.1124/mol.113.089573] [PMID: 24170779]
[23]
Park, J.Y.; Pillinger, M.H.; Abramson, S.B. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin. Immunol., 2006, 119(3), 229-240.
[http://dx.doi.org/10.1016/j.clim.2006.01.016] [PMID: 16540375]
[24]
Zasłona, Z.; Pålsson-McDermott, E.M.; Menon, D.; Haneklaus, M.; Flis, E.; Prendeville, H.; Corcoran, S.E.; Peters-Golden, M.; O’Neill, L.A.J. The Induction of Pro-IL-1β by lipopolysaccharide requires endogenous prostaglandin E2 production. J. Immunol., 2017, 198(9), 3558-3564.
[http://dx.doi.org/10.4049/jimmunol.1602072] [PMID: 28298525]
[25]
Everts, B.; Amiel, E.; Huang, S.C.; Smith, A.M.; Chang, C.H.; Lam, W.Y.; Redmann, V.; Freitas, T.C.; Blagih, J.; van der Windt, G.J.; Artyomov, M.N.; Jones, R.G.; Pearce, E.L.; Pearce, E.J. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol., 2014, 15(4), 323-332.
[http://dx.doi.org/10.1038/ni.2833] [PMID: 24562310]
[26]
Cader, M.Z.; Boroviak, K.; Zhang, Q.; Assadi, G.; Kempster, S.L.; Sewell, G.W.; Saveljeva, S.; Ashcroft, J.W.; Clare, S.; Mukhopadhyay, S.; Brown, K.P.; Tschurtschenthaler, M.; Raine, T.; Doe, B.; Chilvers, E.R.; Griffin, J.L.; Kaneider, N.C.; Floto, R.A.; D’Amato, M.; Bradley, A.; Wakelam, M.J.; Dougan, G.; Kaser, A. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat. Immunol., 2016, 17(9), 1046-1056.
[http://dx.doi.org/10.1038/ni.3532] [PMID: 27478939]
[27]
Norris, K.L.; Lee, J.Y.; Yao, T.P. Acetylation goes global: the emergence of acetylation biology. Sci. Signal., 2009, 2(97), pe76.
[http://dx.doi.org/10.1126/scisignal.297pe76] [PMID: 19920250]
[28]
Wang, B.; Rao, Y.H.; Inoue, M.; Hao, R.; Lai, C.H.; Chen, D.; McDonald, S.L.; Choi, M.C.; Wang, Q.; Shinohara, M.L.; Yao, T.P. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nat. Commun., 2014, 5, 3479.
[http://dx.doi.org/10.1038/ncomms4479] [PMID: 24632940]
[29]
Hu, L.; Yu, Y.; Huang, H.; Fan, H.; Hu, L.; Yin, C.; Li, K.; Fulton, D.J.; Chen, F. Epigenetic regulation of interleukin 6 by histone acetylation in macrophages and its role in paraquat-induced pulmonary fibrosis. Front. Immunol., 2017, 7, 696.
[http://dx.doi.org/10.3389/fimmu.2016.00696] [PMID: 28194150]
[30]
Palmieri, E.M.; Spera, I.; Menga, A.; Infantino, V.; Porcelli, V.; Iacobazzi, V.; Pierri, C.L.; Hooper, D.C.; Palmieri, F.; Castegna, A. Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation. Biochim. Biophys. Acta, 2015, 1847(8), 729-738.
[http://dx.doi.org/10.1016/j.bbabio.2015.04.009] [PMID: 25917893]
[31]
Covarrubias, A.J.; Aksoylar, H.I.; Yu, J.; Snyder, N.W.; Worth, A.J.; Iyer, S.S.; Wang, J.; Ben-Sahra, I.; Byles, V.; Polynne-Stapornkul, T.; Espinosa, E.C.; Lamming, D.; Manning, B.D.; Zhang, Y.; Blair, I.A.; Horng, T. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. eLife, 2016, 5, 5.
[http://dx.doi.org/10.7554/eLife.11612] [PMID: 26894960]
[32]
Michelucci, A.; Cordes, T.; Ghelfi, J.; Pailot, A.; Reiling, N.; Goldmann, O.; Binz, T.; Wegner, A.; Tallam, A.; Rausell, A.; Buttini, M.; Linster, C.L.; Medina, E.; Balling, R.; Hiller, K. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA, 2013, 110(19), 7820-7825.
[http://dx.doi.org/10.1073/pnas.1218599110] [PMID: 23610393]
[33]
Convertini, P.; Menga, A.; Andria, G.; Scala, I.; Santarsiero, A.; Castiglione Morelli, M.A.; Iacobazzi, V.; Infantino, V. The contribution of the citrate pathway to oxidative stress in down syndrome. Immunology, 2016, 149(4), 423-431.
[http://dx.doi.org/10.1111/imm.12659] [PMID: 27502741]
[34]
Pearce, N.J.; Yates, J.W.; Berkhout, T.A.; Jackson, B.; Tew, D.; Boyd, H.; Camilleri, P.; Sweeney, P.; Gribble, A.D.; Shaw, A.; Groot, P.H. The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem. J., 1998, 334(Pt 1), 113-119.
[http://dx.doi.org/10.1042/bj3340113] [PMID: 9693110]
[35]
Abramson, H.N. The lipogenesis pathway as a cancer target. J. Med. Chem., 2011, 54(16), 5615-5638.
[http://dx.doi.org/10.1021/jm2005805] [PMID: 21726077]
[36]
O’Neill, L.A. A broken krebs cycle in macrophages. Immunity, 2015, 42(3), 393-394.
[http://dx.doi.org/10.1016/j.immuni.2015.02.017] [PMID: 25786167]
[37]
Valenti, D.; Manente, G.A.; Moro, L.; Marra, E.; Vacca, R.A. Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem. J., 2011, 435(3), 679-688.
[http://dx.doi.org/10.1042/BJ20101908] [PMID: 21338338]
[38]
Aluvila, S.; Sun, J.; Harrison, D.H.; Walters, D.E.; Kaplan, R.S. Inhibitors of the mitochondrial citrate transport protein: validation of the role of substrate binding residues and discovery of the first purely competitive inhibitor. Mol. Pharmacol., 2010, 77(1), 26-34.
[http://dx.doi.org/10.1124/mol.109.058750] [PMID: 19843634]
[39]
Klingenberg, M. Kinetic study of the tricarboxylate carrier in rat liver mitochondria. Eur. J. of Biochem., 1972, 26(4), p.587-594.
[http://dx.doi.org/10.1111/j.1432-1033.1972.tb01801.x] [PMID: 5025933]
[40]
Stipani, I.; Krämer, R.; Palmieri, F.; Klingenberg, M. Citrate transport in liposomes reconstituted with triton extracts from mitochondria. Biochem. Biophys. Res. Commun., 1980, 97(3), 1206-1214.
[http://dx.doi.org/10.1016/0006-291X(80)91503-X] [PMID: 7470147]
[41]
Zara, V.; Palmieri, L.; Franco, M.R.; Perrone, M.; Gnoni, G.V.; Palmieri, F. Kinetics of the reconstituted tricarboxylate carrier from eel liver mitochondria. J. Bioenerg. Biomembr., 1998, 30(6), 555-563.
[http://dx.doi.org/10.1023/A:1020532500749] [PMID: 10206475]
[42]
Ma, C.; Remani, S.; Sun, J.; Kotaria, R.; Mayor, J.A.; Walters, D.E.; Kaplan, R.S. Identification of the substrate binding sites within the yeast mitochondrial citrate transport protein. J. Biol. Chem., 2007, 282(23), 17210-17220.
[http://dx.doi.org/10.1074/jbc.M611268200] [PMID: 17400551]
[43]
Pierri, C.L.; Palmieri, F.; De Grassi, A. Single-nucleotide evolution quantifies the importance of each site along the structure of mitochondrial carriers. Cell. Mol. Life Sci., 2014, 71(2), 349-364.
[http://dx.doi.org/10.1007/s00018-013-1389-y] [PMID: 23800987]
[44]
Remani, S.; Sun, J.; Kotaria, R.; Mayor, J.A.; Brownlee, J.M.; Harrison, D.H.; Walters, D.E.; Kaplan, R.S. The yeast mitochondrial citrate transport protein: identification of the Lysine residues responsible for inhibition mediated by Pyridoxal 5′-phosphate. J. Bioenerg. Biomembr., 2008, 40(6), 577-585.
[http://dx.doi.org/10.1007/s10863-008-9187-1] [PMID: 19002576]
[45]
Genchi, G.; Spagnoletta, A.; De Santis, A.; Stefanizzi, L.; Palmieri, F. Purification and characterization of the reconstitutively active citrate carrier from maize mitochondria. Plant Physiol., 1999, 120(3), 841-848.
[http://dx.doi.org/10.1104/pp.120.3.841] [PMID: 10398720]
[46]
Palmieri, F. Mitochondrial transporters of the SLC25 family and associated diseases: a review. J. Inherit. Metab. Dis., 2014, 37(4), 565-575.
[http://dx.doi.org/10.1007/s10545-014-9708-5] [PMID: 24797559]
[47]
Chaouch, A.; Porcelli, V.; Cox, D.; Edvardson, S.; Scarcia, P.; De Grassi, A.; Pierri, C.L.; Cossins, J.; Laval, S.H.; Griffin, H.; Müller, J.S.; Evangelista, T.; Töpf, A.; Abicht, A.; Huebner, A.; von der Hagen, M.; Bushby, K.; Straub, V.; Horvath, R.; Elpeleg, O.; Palace, J.; Senderek, J.; Beeson, D.; Palmieri, L.; Lochmüller, H. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission. J. Neuromuscul. Dis., 2014, 1(1), 75-90.
[http://dx.doi.org/10.3233/JND-140021] [PMID: 26870663]
[48]
Edvardson, S.; Porcelli, V.; Jalas, C.; Soiferman, D.; Kellner, Y.; Shaag, A.; Korman, S.H.; Pierri, C.L.; Scarcia, P.; Fraenkel, N.D.; Segel, R.; Schechter, A.; Frumkin, A.; Pines, O.; Saada, A.; Palmieri, L.; Elpeleg, O. Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. J. Med. Genet., 2013, 50(4), 240-245.
[http://dx.doi.org/10.1136/jmedgenet-2012-101485] [PMID: 23393310]
[49]
Palmieri, F.; Pierri, C.L. Structure and function of mitochondrial carriers - role of the transmembrane helix P and G residues in the gating and transport mechanism. FEBS Lett., 2010, 584(9), 1931-1939.
[http://dx.doi.org/10.1016/j.febslet.2009.10.063] [PMID: 19861126]
[50]
Todisco, S.; Di Noia, M.A.; Onofrio, A.; Parisi, G.; Punzi, G.; Redavid, G.; De Grassi, A.; Pierri, C.L. Identification of new highly selective inhibitors of the human ADP/ATP carriers by molecular docking and in vitro transport assays. Biochem. Pharmacol., 2016, 100, 112-132.
[http://dx.doi.org/10.1016/j.bcp.2015.11.019] [PMID: 26616220]
[51]
Pierri, C.L.; Parisi, G.; Porcelli, V. Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening. Biochim. Biophys. Acta, 2010, 1804(9), 1695-1712.
[http://dx.doi.org/10.1016/j.bbapap.2010.04.008] [PMID: 20433957]
[52]
Sun, J.; Aluvila, S.; Kotaria, R.; Mayor, J.A.; Walters, D.E.; Kaplan, R.S. Mitochondrial and plasma membrane citrate transporters: discovery of selective inhibitors and application to structure/function analysis. Mol. Cell. Pharmacol., 2010, 2(3), 101-110.
[PMID: 20686672]
[53]
So, J.S. Roles of endoplasmic reticulum stress in immune responses. Mol. Cells, 2018, 41(8), 705-716.
[http://dx.doi.org/10.14348/molcells.2018.0241] [PMID: 30078231]
[54]
Catalina-Rodriguez, O.; Kolukula, V.K.; Tomita, Y.; Preet, A.; Palmieri, F.; Wellstein, A.; Byers, S.; Giaccia, A.J.; Glasgow, E.; Albanese, C.; Avantaggiati, M.L. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget, 2012, 3(10), 1220-1235.
[http://dx.doi.org/10.18632/oncotarget.714] [PMID: 23100451]
[55]
Triscari, J.; Sullivan, A.C. Comparative effects of (--)-hydroxycitrate and (+)-allo-hydroxycitrate on acetyl CoA carboxylase and fatty acid and cholesterol synthesis in vivo. Lipids, 1977, 12(4), 357-363.
[http://dx.doi.org/10.1007/BF02533638] [PMID: 16191]
[56]
Berkhout, T.A.; Havekes, L.M.; Pearce, N.J.; Groot, P.H. The effect of (-)-hydroxycitrate on the activity of the low-density-lipoprotein receptor and 3-hydroxy-3-methylglutaryl-CoA reductase levels in the human hepatoma cell line Hep G2. Biochem. J., 1990, 272(1), 181-186.
[http://dx.doi.org/10.1042/bj2720181] [PMID: 2176080]
[57]
Sullivan, A.C.; Triscari, J.; Spiegel, J.E. Metabolic regulation as a control for lipid disorders. II. Influence of (--)-hydroxycitrate on genetically and experimentally induced hypertriglyceridemia in the rat. Am. J. Clin. Nutr., 1977, 30(5), 777-784.
[http://dx.doi.org/10.1093/ajcn/30.5.777] [PMID: 857644]
[58]
Zaidi, N.; Swinnen, J.V.; Smans, K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res., 2012, 72(15), 3709-3714.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4112] [PMID: 22787121]
[59]
Bilen, O.; Ballantyne, C.M. Bempedoic Acid (ETC-1002): an investigational inhibitor of ATP citrate lyase. Curr. Atheroscler. Rep., 2016, 18(10), 61.
[http://dx.doi.org/10.1007/s11883-016-0611-4] [PMID: 27663902]
[60]
Pinkosky, S.L.; Filippov, S.; Srivastava, R.A.; Hanselman, J.C.; Bradshaw, C.D.; Hurley, T.R.; Cramer, C.T.; Spahr, M.A.; Brant, A.F.; Houghton, J.L.; Baker, C.; Naples, M.; Adeli, K.; Newton, R.S. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J. Lipid Res., 2013, 54(1), 134-151.
[http://dx.doi.org/10.1194/jlr.M030528] [PMID: 23118444]
[61]
Lott, I.T.; Doran, E.; Nguyen, V.Q.; Tournay, A.; Head, E.; Gillen, D.L. Down syndrome and dementia: a randomized, controlled trial of antioxidant supplementation. Am. J. Med. Genet. A., 2011, 155A(8), 1939-1948.
[http://dx.doi.org/10.1002/ajmg.a.34114] [PMID: 21739598]
[62]
Chypre, M.; Zaidi, N.; Smans, K. ATP-citrate lyase: a mini-review. Biochem. Biophys. Res. Commun., 2012, 422(1), 1-4.
[http://dx.doi.org/10.1016/j.bbrc.2012.04.144] [PMID: 22575446]
[63]
Hu, J.; Komakula, A.; Fraser, M.E. Binding of hydroxycitrate to human ATP-citrate lyase. Acta Crystallogr. D Struct. Biol., 2017, 73(Pt 8), 660-671.
[http://dx.doi.org/10.1107/S2059798317009871] [PMID: 28777081]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy