[1]
Grare, M.; Mourer, M.; Fontanay, S.; Regnouf-de-Vains, J-B.; Finance, C.; Duval, R.E. In VItro Activity of para-guanidinoethylcalix[4]arene against Susceptible and antibiotic-resistant gram-negative and gram-positive bacteria. J. Antimicrob. Chemother., 2007, 60, 575-581.
[2]
Roberts, M. Distribution of Macrolide, Lincosamide, Streptogramin, Ketolide and Oxazolidinone (MLSKO) resistance genes in gram-negative bacteria. Curr. Drug Target Infectious. Disord., 2004, 4, 207-215.
[3]
Tenover, F.C.; McDonald, L.C. Vancomycin-resistant staphylococci and enterococci: epidemiology and control. Curr. Opin. Infect. Dis., 2005, 18, 300-305.
[4]
Hover, B.M.; Kim, S-H.; Katz, M.; Charlop-Powers, Z.; Owen, J.G.; Ternei, M.A.; Maniko, J.; Estrela, A.B.; Molina, H.; Park, S.; Perlin, D.S.; Brady, S.F. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant gram-positive pathogens. Nat. Microbiol., 2018, 3, 415-422.
[5]
Liaras, K.; Geronikaki, A.; Glamočlija, J.; Ćirić, A.; Soković, M. Thiazole-based chalcones as potent antimicrobial agents. synthesis and biological evaluation. Bioorg. Med. Chem., 2011, 19, 3135-3140.
[6]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N. -(4-Substituted-Thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26, 1158-1163.
[7]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G.; Connolly, C.J.C.; Doherty, A.M.; Klutchko, S.R.; Sircar, I. Structure-activity relationships of a series of 2-Amino-4-Thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35, 2562-2572.
[8]
Sharma, R.N.; Xavier, F.P.; Vasu, K.K.; Chaturvedi, S.C.; Pancholi, S.S. Synthesis of 4-Benzyl-1,3-Thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach. J. Enzyme Inhib. Med. Chem., 2009, 24, 890-897.
[9]
Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzer, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-Alkyl-3-Pyridinyl)-2-Thiazolamines: A novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33, 311-317.
[10]
Mayhoub, A.S.; Khaliq, M.; Botting, C.; Li, Z.; Kuhn, R.J.; Cushman, M. An investigation of phenylthiazole antiflaviviral agents. Bioorg. Med. Chem., 2011, 19, 3845-3854.
[11]
Cantrell, A.S.; Engelhardt, P.; Högberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kangasmetsä, J.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr; Muesing, M.A.; Noreén, R.; Oberg, B.; Pranc, P.; Sahlberg, C.; Ternansky, R.J.; Vasileff, R.T.; Vrang, L.; West, S.J.; Zhang, H. Phenethylthiazolylthiourea (PETT) compounds as a new class of HIV-1 reverse transcriptase inhibitors. 2. Synthesis and further structure-activity relationship studies of PETT analogs. J. Med. Chem., 1996, 39, 4261-4274.
[12]
Ergenç, N.; Çapan, G.; Günay, N.S.; Özkirimli, S.; Güngör, M.; Özbey, S.; Kendi, E. Synthesis and hypnotic activity of new 4-Thiazolidinone and 2-Thioxo-4,5-Imidazolidinedione derivatives. Arch. Pharm. (Weinheim), 1999, 332, 343-347.
[13]
Carter, J.S.; Kramer, S.; Talley, J.J.; Penning, T.; Collins, P.; Graneto, M.J.; Seibert, K.; Koboldt, C.M.; Masferrer, J.; Zweifel, B. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 1999, 9, 1171-1174.
[14]
Rudolph, J.; Theis, H.; Hanke, R.; Endermann, R.; Johannsen, L.; Geschke, F-U. Seco-Cyclothialidines: New concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties. J. Med. Chem., 2001, 44, 619-626.
[15]
Özdemir, A.; Turan-Zitouni, G.; Asım Kaplancıklı, Z.; Revial, G.; Güven, K. Synthesis and antimicrobial activity of 1-(4-Aryl-2-thiazolyl)-3-(2-thienyl)-5-Aryl-2-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42, 403-409.
[16]
Quiroga, J.; Hernández, P.; Insuasty, B.; Abonía, R.; Cobo, J.; Sánchez, A.; Nogueras, M.; Low, J.N. Control of the reaction between 2-aminobenzothiazoles and mannich bases. synthesis of pyrido[2,1-b][1,3]benzothiazoles versus [1,3]benzothiazolo[2,3-B]quinazolines. J. Chem. Soc., Perkin Trans. 1, 2002, 57, 555-559.
[17]
Souza, M. de Almeida, M. de. Drogas Anti-HIV: Passado, presente E perspectivas futuras. Quim. Nova, 2003, 26, 366-372.
[18]
Hutchinson, I.; Jennings, S.A.; Vishnuvajjala, B.R.; Westwell, A.D.; Stevens, M.F.G. Antitumor Benzothiazoles. 16. synthesis and pharmaceutical properties of antitumor 2-(4-Aminophenyl) benzothiazole Amino Acid Prodrugs. J. Med. Chem., 2002, 45, 744-747.
[19]
Mylari, B.L.; Larson, E.R.; Beyer, T.A.; Zembrowski, W.J.; Aldinger, C.E.; Dee, M.F.; Siegel, T.W.; Singleton, D.H. Novel, potent aldose reductase inhibitors: 3,4-Dihydro-4-Oxo-3-[[5-(Trifluoromethyl)-2-Benzothiazolyl]methyl]-1-Phthalazineacetic acid (Zopolrestat) and congeners. J. Med. Chem., 1991, 34, 108-122.
[20]
Irfan, M.; Alam, S.; Manzoor, N.; Abid, M.; Manzoor, N.; Khan, L. Effect of quinoline based 1,2,3-Triazole and its structural analogues on growth and virulence attributes of candida albicans. PLoS One, 2017, 12, e0175710.
[21]
Masood, M.M.; Hasan, P.; Tabrez, S.; Ahmad, M.B.; Yadava, U.; Daniliuc, C.G.; Sonawane, Y.A.; Azam, A.; Rub, A.; Abid, M. Anti-leishmanial and cytotoxic activities of amino acid-triazole hybrids: synthesis, biological evaluation, molecular docking and in silico physico-chemical properties. Bioorg. Med. Chem. Lett., 2017, 27, 1886-1891.
[22]
Irfan, M.; Khan, S.I.; Manzoor, N.; Abid, M. Biological activities and in silico physico-chemical properties of 1,2,3-triazoles derived from natural bioactive alcohols. Anti-infective. Agents, 2016, 14, 126-131.
[23]
Aneja, B.; Irfan, M.; Kapil, C.; Jairajpuri, M.A.; Maguire, R.; Kavanagh, K.; Rizvi, M.M.A.; Manzoor, N.; Azam, A.; Abid, M.; Zhang, W.; Zhu, J.; Lü, J.; Sheng, C. Effect of novel triazole-amino acid hybrids on growth and virulence of candida species: in vitro and in vivo studies. Org. Biomol. Chem., 2016, 14, 10599-10619.
[24]
Masood, M.M.; Pillalamarri, V.K.; Irfan, M.; Aneja, B.; Jairajpuri, M.A.; Zafaryab, M.; Rizvi, M.M.A.; Yadava, U.; Addlagatta, A.; Abid, M. Diketo Acids and their amino acid/dipeptidic analogues as promising scaffolds for the development of bacterial methionine aminopeptidase inhibitors. RSC Adv, 2015, 5, 34173-34183.
[25]
Aneja, B.; Irfan, M.; Hassan, M.I.; Prakash, A.; Yadava, U.; Daniliuc, C.G.; Zafaryab, M.; Rizvi, M.M.A.; Azam, A.; Abid, M. Monocyclic β-lactam and unexpected oxazinone formation: synthesis, crystal structure, docking studies and antibacterial evaluation. J. Enzyme Inhib. Med. Chem., 2015, 1-19.
[26]
Irfan, M.; Aneja, B.; Yadava, U.; Khan, S.I.; Manzoor, N.; Daniliuc, C.G.; Abid, M. Synthesis, QSAR and anticandidal evaluation of 1,2,3-Triazoles derived from naturally bioactive scaffolds. Eur. J. Med. Chem., 2015, 93, 246-254.
[27]
Lowther, W.T.; Matthews, B.W. Structure and function of the methionine aminopeptidases. Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol., 2000, 1477, 157-167.
[28]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate Solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23, 3-25.
[29]
Wikler, M.A. Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement. Clinical and Laboratory Standards Institute; CLSI, 2007.
[30]
Kumar, A.; Zafaryab, M.; Umar, A.; Rizvi, M.M.A.; Ansari, H.Z.A.F.; Ansari, S.G. Relief of oxidative stress using curcumin and glutathione functionalized ZnO nanoparticles in HEK-293 cell line. J. Biomed. Nanotechnol., 2015, 11, 1913-1926.
[31]
Trott, O.; Olson, A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[32]
DeLano, W. The PyMOL User’s Manual; , 2002.
[33]
Schrödinger, L. QikProp, Version 5.1. New York, NY; , 2017.