Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Electroanalytical Methods for Determination of Calcium Channel Blockers

Author(s): Fatma Ağın*

Volume 15, Issue 3, 2019

Page: [207 - 218] Pages: 12

DOI: 10.2174/1573411014666180426165750

Price: $65

Abstract

Background: Calcium Channel Blockers (CCBs) are widely used in the treatment of cardiovascular and ischemic heart diseases in recent years. They treat arrhythmias by reducing cardiac cycle contraction and also benefit ischemic heart diseases. Electroanalytical methods are very powerful analytical methods used in the pharmaceutical industry because of the determination of therapeutic agents and/or their metabolites in clinical samples at extremely low concentrations (10-50 ng/ml). The purpose of this review is to gather electroanalytical methods used for the determination of calcium channel blocker drugs in pharmaceutical dosage forms and biological media selected mainly from current articles.

Methods: This review mainly includes recent determination studies of calcium channel blockers by electroanalytical methods from pharmaceutical dosage forms and biological samples. The studies of calcium channel blockers electroanalytical determination in the literature were reviewed and interpreted.

Results: There are a lot of studies on amlodipine and nifedipine, but the number of studies on benidipine, cilnidipine, felodipine, isradipine, lercanidipine, lacidipine, levamlodipine, manidipine, nicardipine, nilvadipine, nimodipine, nisoldipine, nitrendipine, diltiazem, and verapamil are limited in the literature. In these studies, DPV and SWV are the most used methods. The other methods were used less for the determination of calcium channel blocker drugs.

Conclusion: Electroanalytical methods especially voltammetric methods supply reproducible and reliable results for the analysis of the analyte. These methods are simple, more sensitive, rapid and inexpensive compared to the usually used spectroscopic and chromatographic methods.

Keywords: Calcium channel blockers, determination, electroanalytical method, validation, heart diseases, therapeutic agents.

Graphical Abstract

[1]
Brunton, L.L. Goodman and Gilman’s “The Pharmacological Basis of Therapeutics”, 11th ed; McGraw Hill Press: New York, 2006.
[2]
Katzung, B.G.; Masters, S.B.; Trevor, A.J. Basic and Clinical Pharmacology, 11th ed; The McGraw-Hill Companies: USA, 2009.
[3]
The Pharmacologic Treatment of Systemic Hypertension - Antihypertensive Drugs.. http://www.cvpharmacology.com/antihyperten sive/antihypertensive (Accessed June 16, 2017).
[4]
Kissinger, P.T.; Heineman, W.R. Laboratory Techniques in Electroanalytical Chemistry, 2th ed; Dekker: New York, 1996, p. 986.
[5]
Gupta, V.K.; Jain, R.; Radhapyari, K.; Jadon, N. Agarwal, Shilpi. Voltammetric techniques for the assay of pharmaceuticals-A review. Anal. Biochem., 2011, 408, 179-196.
[6]
Uslu, B.; Ozkan, S.A. Anodic voltammetry of abacavir and its determination in pharmaceuticals and biological fluids. Electrochim. Acta, 2004, 49, 4321-4329.
[7]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[8]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Coll. Interf. Sci., 2017, 495, 61-67.
[9]
Jain, A.K.; Gupta, V.K.; Radi, S.; Singh, L.P.; Raisoni, J.R. A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim. Acta, 2006, 51, 2547-2553.
[10]
Ozkan, S. Electroanalytical Methods in Pharmaceutical Analysis and Their Validation; HNB Publishing: New York, 2012.
[11]
Bozal, B.; Uslu, B.; Ozkan, S.A. A review of electroanalytical techniques for determination of anti-hiv drugs. Int. J. Electrochem., 2011, 2011, 1-17.
[12]
Torres, R.F.; Mochon, M.C.; Jimenez Sanchez, J.C.; Bello Lopez, M.A.; Perez, A.G. Electrochemical behaviour and determination of acrivastine in pharmaceuticals and human urine. J. Pharmaceut. Biomed. Anal., 2002, 30, 1215-1219.
[13]
Abdine, H.; Belal, F. Polarographic behaviour and determination of acrivastine in capsules and human urine. Talanta, 2002, 56, 97-104.
[14]
Santos, A.L.; Takeuchi, R.M.; Mariotti, M.P.; De Oliveira, M.F.; Zanoni, M.V.B.; Stradiotto, N.R. Study of electrochemical oxidation and determination of albendazole using a glassy carbon-rotating disk electrode. II Farmaco, 2005, 60, 671-674.
[15]
Wang, J. Analytical Electrochemistry, 3rd ed; Wiley-VCH: New York, 2006, pp. 1-272.
[16]
Smyth, M.R.; Vos, J.G. Analytical Voltammetry.Vol. XXVII; Elsevier Science Pub: Amsterdam, 1992.
[17]
Wang, J. Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine; VCH: New York, 1988, pp. 1-188.
[18]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications, 2nd ed; Wiley: New York, 2001, pp. 1-864.
[19]
Zoski, C.G. Handbook of Electrochemistry, 1st ed; Elsevier Pub: Amsterdam, 2007, pp. 1-934.
[20]
Ozkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33, 155-181.
[21]
Uslu, B.; Ozkan, S.A. Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Anal. Lett., 2011, 44, 2644-2702.
[22]
Harvey, D. Modern Analytical Chemistry, 1th ed; McGraw-Hill Companies: USA, 2000.
[23]
Ozkan, S.A. Principles and techniques of electroanalytical stripping methods for pharmaceutically active compounds in forms and biological samples. Curr. Pharmaceut. Anal., 2009, 5, 127-143.
[24]
Uslu, B.; Ozkan, S.A. Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal. Lett., 2007, 40, 817-853.
[25]
Uslu, B.; Ozkan, S.A. Solid electrodes in electroanalytical chemistry: Present applications and prospects for high-throughput screening of drug compounds. Comb. Chem. High Throughp Screen., 2007, 10, 495-513.
[26]
Scholz, F. Electroanalytical Methods, 2th ed; Springer-Verlag: Berlin, Heidelberg, 2010.
[27]
Ağın, F.; Serdaroğlu, V. Voltammetric determination of nimesulide using multiwalled carbon nanaotubes modified carbon paste electrode. Turk. J. Pharm. Sci, 2016, 13, 335-341.
[28]
Mirceski, V.; Komorsky-Lovric, S.; Lovric, M. In: Square Wave Voltammetry Theory and Application; F., Scholz, Ed.; Springer-Verlag Pub, 2007; p. 201.
[29]
Ağın, F. Electrochemical determination of amoxicillin on a poly(acridine orange) modified glassy carbon electrode. Anal. Lett., 2016, 49, 1366-1378.
[30]
Jadon, N.; Jain, R.; Pandey, A. Electrochemical analysis of amlodipine in some pharmaceutical formulations and biological fluid using disposable pencil graphite electrode. J. Electroanal. Chem., 2017, 788, 7-13.
[31]
Khairy, M.; Khorshed, A.A.; Rashwan, F.A.; Salah, G.A.; Abdel-Wadoodc, H.M.; Banksd, C.E. Sensitive determination of amlodipine besylate using bare/unmodified and DNA-modified screen-printed electrodes in tablets and biological fluids. Sens. Actuat. B., 2017, 239, 768-775.
[32]
Erden, S.; Bayraktepe, D.E.; Yazan, Z.; Dinç, E. TiO2 modified carbon paste sensor for voltammetric analysis and chemometric optimization approach of amlodipine in commercial formulation. Ionics, 2016, 22, 1231-1240.
[33]
Švorc, L.; Cinková, K.; Sochra, J.; Vojs, M.; Michniak, P.; Marton, M. Sensitive electrochemical determination of amlodipine in pharmaceutical tablets and human urine using a boron-doped diamond electrode. J. Electroanal. Chem., 2014, 728, 86-93.
[34]
Emami, M.; Shamsipur, M.; Saber, R. Design of poly-L -methionine-gold nanocomposit/multi-walled carbon nanotube modified glassy carbon electrode for determination of amlodipine in human biological fluids. J. Solid State Electrochem., 2014, 18, 985-992.
[35]
Omar, M.A.; Abdelmageed, O.H.; Abdelgaber, A.A.; Saleh, S.F. Assay of amlodipine besylate in tablets and human biological fluids by square wave cathodic stripping voltammetry. Int. Res. J. Pure Appl. Chem., 2013, 3, 133-146.
[36]
Goyal, R.N.; Bishnoi, S. Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. Bioelectrochemistry, 2010, 79, 234-240.
[37]
Fathirad, F.; Mostafavi, A.; Afzali, D. Conductive polymeric ionic liquid/Fe3O4 nanocomposite as an efficient catalyst for the voltammetric determination of amlodipine besylate. J. AOAC Int., 2017, 100, 406-413.
[38]
Norouzi, P.; Gupta, V.K.; Larijani, B.; Rasoolipour, S.; Faridbod, F.; Ganjali, M.R. Coulometric differential FFT admittance voltammetry determination of amlodipine in pharmaceutical formulation by nano-composite electrode. Talanta, 2015, 131, 577-584.
[39]
Karadas, N.; Sanli, S.; Gumustas, M.; Ozkan, S.A. Voltammetric and RP-LC assay for determination of benidipine HCl. J. Pharmaceut. Biomed. Anal., 2012, 66, 116-125.
[40]
Jain, R. Dhanjai. An electrochemical sensor based on synergistic effect of nano zinc oxide-multiwalled carbon nanotubes hybrid film for sensing of calcium antagonist cilnidipine. J. Electrochem. Soc., 2013, 160, H645-H652.
[41]
Sikkander, A.R.M.; Vedhi, C.; Manisankar, P. Electrochemical determination of calcium channel blocker drugs using multiwall carbon nanotube-modified glassy carbon electrode. Int. J. Indus. Chem., 2012, 3, 1-8.
[42]
Belal, F.; Al-Majed, A.; Julkhuf, S. Voltammetric determination of isradipine in dosage forms and spiked human plasma and urine. J. Pharmaceut. Biomed. Anal., 2003, 31, 989-998.
[43]
Squella, J.A.; Iribarren, A.E.; Sturm, J.C.; Núñez-Vergara, L.J. Elec-trochemical determination of lacidipine. J. AOAC Int., 1999, 82, 1077-1082.
[44]
Jain, R.; Tiwari, D.C.; Shrivastava, S. A sensitive voltammetric sensor based on synergistic effect of graphene-polyaniline hybrid film for quantification of calcium antagonist lercanidipine. J. Appl. Polym. Sci., 2014, 131, 1-7.
[45]
Öztürk, F.; Tasdemir, I.H.; Erdoğan, D.A.; Erk, N.; Kılıç, E. A new voltammetric method for the determination of lercanidipine in bio-logical samples. Acta Chim. Slov., 2011, 58, 830-839.
[46]
Altun, Y.; Uslu, B.; Ozkan, S.A. Electroanalytical characteristics of lercanidipine and its voltammetric determination in pharmaceuti-cals and human serum on boron-doped diamond electrode. Anal. Lett., 2010, 43, 1958-1975.
[47]
Alvarez-Lueje, A.; Nunez-Vergara, L.J.; Pujol, S.; Squella, J.A. Voltammetric behavior of lercanidipine and its differential pulse polarographic determination in tablets. Electroanalysis, 2002, 14, 1098-1104.
[48]
Jain, R.; Sinha, A.; Khan, A.L. Polyaniline-graphene oxide nano-composite sensor for quantification of calcium channel blocker le-vamlodipine. Mat. Sci. Eng. C, 2016, 65, 205-221.
[49]
Sarala, E.; Krishna Reddy, V.; Madhusudhana Reddy, K.; Kiran Babu, L.; Chenna Krishna Reddy, R.; Rami Reddy, Y.V. Electro-chemical behavior of manidipine and its voltammetric determina-tion in pharmaceutical formulations. IJPSR, 2016, 7, 2656-2662.
[50]
Zarei, K.; Fatemi, L.; Kor, K. Stripping voltammetric determination of nicardipine using β-cyclodextrin incorporated carbon nanotube-modified glassy carbon electrode. J. Anal. Chem., 2015, 70, 615-620.
[51]
Zeng, Q.; Wei, T.; Wang, M.; Huang, X.; Fang, Y.; Wang, L. Poly-furfural film modified glassy carbon electrode for highly sensitive nifedipine determination. Electrochim. Acta, 2015, 186, 465-470.
[52]
Wirzal, M.D.H.; Yusoff, A.R.M.; Jiri, Z.; Barek, J. Voltammetric determination of nifedipine at a hanging mercury drop electrode and a mercury meniscus modified silver amalgam electrode. Int. J. Electrochem. Sci., 2015, 10, 4571-4584.
[53]
Shang, L.; Zhao, F.; Zeng, B. Highly dispersive hollow PdAg alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine. Electrochim. Acta, 2015, 168, 330-336.
[54]
Gaichore, R.R.; Srivastava, A.K. Voltammetric determination of nifedipine using a β-cyclodextrin modified multi-walled carbon nanotube paste electrode. Sens. Actuat. B, 2013, 188, 1328-1337.
[55]
Kor, K.; Zarei, K. β-Cyclodextrin incorporated carbon nanotube paste electrode as electrochemical sensor for nifedipine. Electroanalysis, 2013, 25, 1497-1504.
[56]
Baghayeri, M.; Namadchian, M.; Karimi-Maleh, H.; Beitollahi, H. Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode: Application to the analysis of some real samples. J. Electroanal. Chem., 2013, 697, 53-59.
[57]
Khairy, M.; Khorshed, A.A.; Rashwan, F.A.; Salah, G.A.; Abdel-Wadood, H.M.; Banks, C.E. Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilizing MgO nanoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids. Sens. Actuat. B., 2017, 252, 1045-1054.
[58]
Belal, F.; Abdine, H.; Zoman, N. Voltammetric determination of nilvadipine in dosage forms and spiked human urine. J. Pharmaceut. Biomed. Anal., 2001, 26, 585-592.
[59]
Salgado-Figueroa, P.; Gutiérrez, C.; Squella, J.A. Carbon nanofiber screen printed electrode joined to a flow injection system for nimodipine sensing. Sens. Actuat. B., 2015, 220, 456-462.
[60]
Lei, W.; Si, W.; Hao, Q.; Han, Z.; Zhang, Y.; Xia, M. Nitrogen-doped graphene modified electrode for nimodipine sensing. Sens. Actuat. B., 2015, 212, 207-213.
[61]
Reddy, T.M.; Reddy, S.J. Differential pulse adsorptive stripping voltammetric determination of nifedipine and nimodipine in pharmaceutical formulations, urine, and serum samples by using a clay-modified carbon-paste electrode. Anal. Lett., 2004, 37, 2079-2098.
[62]
Attia, A.K.; Refaat, A.S.; Abdulla, S.A. Electrochemical determination of antihypertensive drug nisoldipine in bulk and tablet dosage form using carbon paste electrode. J. Pharm. Res., 2011, 4, 2362-2365.
[63]
Doğrukol-Ak, D.; Gökören, N.; Tunçel, M. A differential pulse voltammetric determination of nisoldipine using glassy carbon electrode in pharmaceutical preparations. Anal. Lett., 1998, 31, 105-116.
[64]
Wei, Y.; Zhang, L.; Zhang, L.; Shao, C.; Li, C. Voltammetric determination of nitrendipine on composite film modified electrode. J. Anal. Chem., 2011, 66, 969-973.
[65]
Yáñez, C.; Núñez-Vergara, L.J.; Squella, J.A. Determination of nitrendipine with -cyclodextrin modified carbon paste electrode. Electroanalysis, 2002, 14, 559-562.
[66]
Attaran, A.M.; Abdol-Manafi, S.; Javanbakht, M.; Enhessari, M. Voltammetric sensor based on Co3O4/SnO2 nanopowders for determination of diltiazem in tablets and biological fluids. J. Nanostruct. Chem, 2016, 6, 121-128.
[67]
Gevaerda, A.; Caetanoa, F.R.; Oliveiraa, P.R.; Zarbin, A.J.G.; Bergamini, M.F.; Marcolino-Juniora, L.H. Thiol-capped gold nanoparticles: Influence of capping amount on electrochemical behavior and potential application as voltammetric sensor for diltiazem. Sens. Actuat. B., 2015, 220, 673-678.
[68]
Hasanzadeh, M.; Pournaghi-Azar, M.H.; Shadjou, N.; Abolghasem, J. Determination of diltiazem in the presence of timolol in human serum samples using a nanoFe3O4@GO modified glassy carbon electrode. RSC Adv, 2014, 4, 51734-51744.
[69]
Oliveira, G.G.; Azzi, D.C.; Vicentini, F.C.; Sartori, E.R.; Fatibello-Filho, O. Voltammetric determination of verapamil and propranolol using a glassy carbon electrode modified with functionalized multiwalled carbon nanotubes within a poly (allylamine hydrochloride) film. J. Electroanal. Chem., 2013, 708, 73-79.
[70]
Hasanzadeha, M.; Pournaghi-Azarb, M.H.; Shadjou, N.; Jouybana, A. A verapamil electrochemical sensor based on magnetic mobile crystalline material-41 grafted by sulfonic acid. Electrochim. Acta, 2013, 89, 660-668.
[71]
Semaan, F.S.; Cavalheiro, É.T.G.; Brett, C.M.A. Electrochemical behavior of verapamil at graphite-polyurethane composite electrodes: determination of release profiles in pharmaceutical samples. Anal. Lett., 2009, 42, 1119-1135.
[72]
Kasima, E.A.; Ghandour, M.A.; El-Haty, M.T.; Ahmed, M.M. Determination of verapamil by adsorptive stripping voltammetry in urine and pharmaceutical formulations. J. Pharmaceut. Biomed. Anal., 2002, 30, 921-929.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy