[1]
Brunton, L.L. Goodman and Gilman’s “The Pharmacological Basis of Therapeutics”, 11th ed; McGraw Hill Press: New York, 2006.
[2]
Katzung, B.G.; Masters, S.B.; Trevor, A.J. Basic and Clinical Pharmacology, 11th ed; The McGraw-Hill Companies: USA, 2009.
[4]
Kissinger, P.T.; Heineman, W.R. Laboratory Techniques in Electroanalytical Chemistry, 2th ed; Dekker: New York, 1996, p. 986.
[5]
Gupta, V.K.; Jain, R.; Radhapyari, K.; Jadon, N. Agarwal, Shilpi. Voltammetric techniques for the assay of pharmaceuticals-A review. Anal. Biochem., 2011, 408, 179-196.
[6]
Uslu, B.; Ozkan, S.A. Anodic voltammetry of abacavir and its determination in pharmaceuticals and biological fluids. Electrochim. Acta, 2004, 49, 4321-4329.
[7]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[8]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Coll. Interf. Sci., 2017, 495, 61-67.
[9]
Jain, A.K.; Gupta, V.K.; Radi, S.; Singh, L.P.; Raisoni, J.R. A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim. Acta, 2006, 51, 2547-2553.
[10]
Ozkan, S. Electroanalytical Methods in Pharmaceutical Analysis and Their Validation; HNB Publishing: New York, 2012.
[11]
Bozal, B.; Uslu, B.; Ozkan, S.A. A review of electroanalytical techniques for determination of anti-hiv drugs. Int. J. Electrochem., 2011, 2011, 1-17.
[12]
Torres, R.F.; Mochon, M.C.; Jimenez Sanchez, J.C.; Bello Lopez, M.A.; Perez, A.G. Electrochemical behaviour and determination of acrivastine in pharmaceuticals and human urine. J. Pharmaceut. Biomed. Anal., 2002, 30, 1215-1219.
[13]
Abdine, H.; Belal, F. Polarographic behaviour and determination of acrivastine in capsules and human urine. Talanta, 2002, 56, 97-104.
[14]
Santos, A.L.; Takeuchi, R.M.; Mariotti, M.P.; De Oliveira, M.F.; Zanoni, M.V.B.; Stradiotto, N.R. Study of electrochemical oxidation and determination of albendazole using a glassy carbon-rotating disk electrode. II Farmaco, 2005, 60, 671-674.
[15]
Wang, J. Analytical Electrochemistry, 3rd ed; Wiley-VCH: New York, 2006, pp. 1-272.
[16]
Smyth, M.R.; Vos, J.G. Analytical Voltammetry.Vol. XXVII; Elsevier Science Pub: Amsterdam, 1992.
[17]
Wang, J. Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine; VCH: New York, 1988, pp. 1-188.
[18]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications, 2nd ed; Wiley: New York, 2001, pp. 1-864.
[19]
Zoski, C.G. Handbook of Electrochemistry, 1st ed; Elsevier Pub: Amsterdam, 2007, pp. 1-934.
[20]
Ozkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33, 155-181.
[21]
Uslu, B.; Ozkan, S.A. Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Anal. Lett., 2011, 44, 2644-2702.
[22]
Harvey, D. Modern Analytical Chemistry, 1th ed; McGraw-Hill Companies: USA, 2000.
[23]
Ozkan, S.A. Principles and techniques of electroanalytical stripping methods for pharmaceutically active compounds in forms and biological samples. Curr. Pharmaceut. Anal., 2009, 5, 127-143.
[24]
Uslu, B.; Ozkan, S.A. Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal. Lett., 2007, 40, 817-853.
[25]
Uslu, B.; Ozkan, S.A. Solid electrodes in electroanalytical chemistry: Present applications and prospects for high-throughput screening of drug compounds. Comb. Chem. High Throughp Screen., 2007, 10, 495-513.
[26]
Scholz, F. Electroanalytical Methods, 2th ed; Springer-Verlag: Berlin, Heidelberg, 2010.
[27]
Ağın, F.; Serdaroğlu, V. Voltammetric determination of nimesulide using multiwalled carbon nanaotubes modified carbon paste electrode. Turk. J. Pharm. Sci, 2016, 13, 335-341.
[28]
Mirceski, V.; Komorsky-Lovric, S.; Lovric, M. In: Square Wave Voltammetry Theory and Application; F., Scholz, Ed.; Springer-Verlag Pub, 2007; p. 201.
[29]
Ağın, F. Electrochemical determination of amoxicillin on a poly(acridine orange) modified glassy carbon electrode. Anal. Lett., 2016, 49, 1366-1378.
[30]
Jadon, N.; Jain, R.; Pandey, A. Electrochemical analysis of amlodipine in some pharmaceutical formulations and biological fluid using disposable pencil graphite electrode. J. Electroanal. Chem., 2017, 788, 7-13.
[31]
Khairy, M.; Khorshed, A.A.; Rashwan, F.A.; Salah, G.A.; Abdel-Wadoodc, H.M.; Banksd, C.E. Sensitive determination of amlodipine besylate using bare/unmodified and DNA-modified screen-printed electrodes in tablets and biological fluids. Sens. Actuat. B., 2017, 239, 768-775.
[32]
Erden, S.; Bayraktepe, D.E.; Yazan, Z.; Dinç, E. TiO2 modified carbon paste sensor for voltammetric analysis and chemometric optimization approach of amlodipine in commercial formulation. Ionics, 2016, 22, 1231-1240.
[33]
Švorc, L.; Cinková, K.; Sochra, J.; Vojs, M.; Michniak, P.; Marton, M. Sensitive electrochemical determination of amlodipine in pharmaceutical tablets and human urine using a boron-doped diamond electrode. J. Electroanal. Chem., 2014, 728, 86-93.
[34]
Emami, M.; Shamsipur, M.; Saber, R. Design of poly-L -methionine-gold nanocomposit/multi-walled carbon nanotube modified glassy carbon electrode for determination of amlodipine in human biological fluids. J. Solid State Electrochem., 2014, 18, 985-992.
[35]
Omar, M.A.; Abdelmageed, O.H.; Abdelgaber, A.A.; Saleh, S.F. Assay of amlodipine besylate in tablets and human biological fluids by square wave cathodic stripping voltammetry. Int. Res. J. Pure Appl. Chem., 2013, 3, 133-146.
[36]
Goyal, R.N.; Bishnoi, S. Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. Bioelectrochemistry, 2010, 79, 234-240.
[37]
Fathirad, F.; Mostafavi, A.; Afzali, D. Conductive polymeric ionic liquid/Fe3O4 nanocomposite as an efficient catalyst for the voltammetric determination of amlodipine besylate. J. AOAC Int., 2017, 100, 406-413.
[38]
Norouzi, P.; Gupta, V.K.; Larijani, B.; Rasoolipour, S.; Faridbod, F.; Ganjali, M.R. Coulometric differential FFT admittance voltammetry determination of amlodipine in pharmaceutical formulation by nano-composite electrode. Talanta, 2015, 131, 577-584.
[39]
Karadas, N.; Sanli, S.; Gumustas, M.; Ozkan, S.A. Voltammetric and RP-LC assay for determination of benidipine HCl. J. Pharmaceut. Biomed. Anal., 2012, 66, 116-125.
[40]
Jain, R. Dhanjai. An electrochemical sensor based on synergistic effect of nano zinc oxide-multiwalled carbon nanotubes hybrid film for sensing of calcium antagonist cilnidipine. J. Electrochem. Soc., 2013, 160, H645-H652.
[41]
Sikkander, A.R.M.; Vedhi, C.; Manisankar, P. Electrochemical determination of calcium channel blocker drugs using multiwall carbon nanotube-modified glassy carbon electrode. Int. J. Indus. Chem., 2012, 3, 1-8.
[42]
Belal, F.; Al-Majed, A.; Julkhuf, S. Voltammetric determination of isradipine in dosage forms and spiked human plasma and urine. J. Pharmaceut. Biomed. Anal., 2003, 31, 989-998.
[43]
Squella, J.A.; Iribarren, A.E.; Sturm, J.C.; Núñez-Vergara, L.J. Elec-trochemical determination of lacidipine. J. AOAC Int., 1999, 82, 1077-1082.
[44]
Jain, R.; Tiwari, D.C.; Shrivastava, S. A sensitive voltammetric sensor based on synergistic effect of graphene-polyaniline hybrid film for quantification of calcium antagonist lercanidipine. J. Appl. Polym. Sci., 2014, 131, 1-7.
[45]
Öztürk, F.; Tasdemir, I.H.; Erdoğan, D.A.; Erk, N.; Kılıç, E. A new voltammetric method for the determination of lercanidipine in bio-logical samples. Acta Chim. Slov., 2011, 58, 830-839.
[46]
Altun, Y.; Uslu, B.; Ozkan, S.A. Electroanalytical characteristics of lercanidipine and its voltammetric determination in pharmaceuti-cals and human serum on boron-doped diamond electrode. Anal. Lett., 2010, 43, 1958-1975.
[47]
Alvarez-Lueje, A.; Nunez-Vergara, L.J.; Pujol, S.; Squella, J.A. Voltammetric behavior of lercanidipine and its differential pulse polarographic determination in tablets. Electroanalysis, 2002, 14, 1098-1104.
[48]
Jain, R.; Sinha, A.; Khan, A.L. Polyaniline-graphene oxide nano-composite sensor for quantification of calcium channel blocker le-vamlodipine. Mat. Sci. Eng. C, 2016, 65, 205-221.
[49]
Sarala, E.; Krishna Reddy, V.; Madhusudhana Reddy, K.; Kiran Babu, L.; Chenna Krishna Reddy, R.; Rami Reddy, Y.V. Electro-chemical behavior of manidipine and its voltammetric determina-tion in pharmaceutical formulations. IJPSR, 2016, 7, 2656-2662.
[50]
Zarei, K.; Fatemi, L.; Kor, K. Stripping voltammetric determination of nicardipine using β-cyclodextrin incorporated carbon nanotube-modified glassy carbon electrode. J. Anal. Chem., 2015, 70, 615-620.
[51]
Zeng, Q.; Wei, T.; Wang, M.; Huang, X.; Fang, Y.; Wang, L. Poly-furfural film modified glassy carbon electrode for highly sensitive nifedipine determination. Electrochim. Acta, 2015, 186, 465-470.
[52]
Wirzal, M.D.H.; Yusoff, A.R.M.; Jiri, Z.; Barek, J. Voltammetric determination of nifedipine at a hanging mercury drop electrode and a mercury meniscus modified silver amalgam electrode. Int. J. Electrochem. Sci., 2015, 10, 4571-4584.
[53]
Shang, L.; Zhao, F.; Zeng, B. Highly dispersive hollow PdAg alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine. Electrochim. Acta, 2015, 168, 330-336.
[54]
Gaichore, R.R.; Srivastava, A.K. Voltammetric determination of nifedipine using a β-cyclodextrin modified multi-walled carbon nanotube paste electrode. Sens. Actuat. B, 2013, 188, 1328-1337.
[55]
Kor, K.; Zarei, K. β-Cyclodextrin incorporated carbon nanotube paste electrode as electrochemical sensor for nifedipine. Electroanalysis, 2013, 25, 1497-1504.
[56]
Baghayeri, M.; Namadchian, M.; Karimi-Maleh, H.; Beitollahi, H. Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode: Application to the analysis of some real samples. J. Electroanal. Chem., 2013, 697, 53-59.
[57]
Khairy, M.; Khorshed, A.A.; Rashwan, F.A.; Salah, G.A.; Abdel-Wadood, H.M.; Banks, C.E. Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilizing MgO nanoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids. Sens. Actuat. B., 2017, 252, 1045-1054.
[58]
Belal, F.; Abdine, H.; Zoman, N. Voltammetric determination of nilvadipine in dosage forms and spiked human urine. J. Pharmaceut. Biomed. Anal., 2001, 26, 585-592.
[59]
Salgado-Figueroa, P.; Gutiérrez, C.; Squella, J.A. Carbon nanofiber screen printed electrode joined to a flow injection system for nimodipine sensing. Sens. Actuat. B., 2015, 220, 456-462.
[60]
Lei, W.; Si, W.; Hao, Q.; Han, Z.; Zhang, Y.; Xia, M. Nitrogen-doped graphene modified electrode for nimodipine sensing. Sens. Actuat. B., 2015, 212, 207-213.
[61]
Reddy, T.M.; Reddy, S.J. Differential pulse adsorptive stripping voltammetric determination of nifedipine and nimodipine in pharmaceutical formulations, urine, and serum samples by using a clay-modified carbon-paste electrode. Anal. Lett., 2004, 37, 2079-2098.
[62]
Attia, A.K.; Refaat, A.S.; Abdulla, S.A. Electrochemical determination of antihypertensive drug nisoldipine in bulk and tablet dosage form using carbon paste electrode. J. Pharm. Res., 2011, 4, 2362-2365.
[63]
Doğrukol-Ak, D.; Gökören, N.; Tunçel, M. A differential pulse voltammetric determination of nisoldipine using glassy carbon electrode in pharmaceutical preparations. Anal. Lett., 1998, 31, 105-116.
[64]
Wei, Y.; Zhang, L.; Zhang, L.; Shao, C.; Li, C. Voltammetric determination of nitrendipine on composite film modified electrode. J. Anal. Chem., 2011, 66, 969-973.
[65]
Yáñez, C.; Núñez-Vergara, L.J.; Squella, J.A. Determination of nitrendipine with -cyclodextrin modified carbon paste electrode. Electroanalysis, 2002, 14, 559-562.
[66]
Attaran, A.M.; Abdol-Manafi, S.; Javanbakht, M.; Enhessari, M. Voltammetric sensor based on Co3O4/SnO2 nanopowders for determination of diltiazem in tablets and biological fluids. J. Nanostruct. Chem, 2016, 6, 121-128.
[67]
Gevaerda, A.; Caetanoa, F.R.; Oliveiraa, P.R.; Zarbin, A.J.G.; Bergamini, M.F.; Marcolino-Juniora, L.H. Thiol-capped gold nanoparticles: Influence of capping amount on electrochemical behavior and potential application as voltammetric sensor for diltiazem. Sens. Actuat. B., 2015, 220, 673-678.
[68]
Hasanzadeh, M.; Pournaghi-Azar, M.H.; Shadjou, N.; Abolghasem, J. Determination of diltiazem in the presence of timolol in human serum samples using a nanoFe3O4@GO modified glassy carbon electrode. RSC Adv, 2014, 4, 51734-51744.
[69]
Oliveira, G.G.; Azzi, D.C.; Vicentini, F.C.; Sartori, E.R.; Fatibello-Filho, O. Voltammetric determination of verapamil and propranolol using a glassy carbon electrode modified with functionalized multiwalled carbon nanotubes within a poly (allylamine hydrochloride) film. J. Electroanal. Chem., 2013, 708, 73-79.
[70]
Hasanzadeha, M.; Pournaghi-Azarb, M.H.; Shadjou, N.; Jouybana, A. A verapamil electrochemical sensor based on magnetic mobile crystalline material-41 grafted by sulfonic acid. Electrochim. Acta, 2013, 89, 660-668.
[71]
Semaan, F.S.; Cavalheiro, É.T.G.; Brett, C.M.A. Electrochemical behavior of verapamil at graphite-polyurethane composite electrodes: determination of release profiles in pharmaceutical samples. Anal. Lett., 2009, 42, 1119-1135.
[72]
Kasima, E.A.; Ghandour, M.A.; El-Haty, M.T.; Ahmed, M.M. Determination of verapamil by adsorptive stripping voltammetry in urine and pharmaceutical formulations. J. Pharmaceut. Biomed. Anal., 2002, 30, 921-929.