[1]
Sanchez-Valencia, J.R.; Dienel, T.; Groning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature, 2014, 512, 61-64.
[2]
Soper, A.K. Physical chemistry: Square ice in a graphene sandwich. Nature, 2015, 519, 417-418.
[3]
Ross, M.B.; Ku, J.C.; Vaccarezza, V.M.; Schatz, G.C.; Mirkin, C.A. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nat. Nanotechnol., 2015, 10, 453-458.
[4]
Li, J.; Ng, H.T.; Cassell, A.; Fan, W.; Chen, H.; Ye, Q.; Koehne, J.; Han, J.; Meyyappan, M. Carbon nanotube nanoelectrode array for ultrasensitive DNA Detection. Nano Lett., 2003, 3(5), 597-602.
[5]
Kara, P.; Ariksoysal, D.; Ozsoz, M. Electrochemical Nucleic Acid Biosensors Based on Hybridization Detection for Clinical Analysis. In: Electrochemical DNA Biosensors; Mehmet , Özsöz., Ed.; Panstanford Publishing: Singapore, 2012; pp. 403-425.
[6]
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors, 2008, 8, 1400-1458.
[7]
Kuhr, W.G. Electrochemical DNA analysis comes of age. Nat. Biotechnol., 2000, 18(10), 1042-1043.
[8]
Khajeamiri, A.R.; Kobarfard, F.; Moghaddam, A.B. Application of polyaniline and polyaniline/multiwalled carbon nanotubes-coated fibers for analysis of ecstasy. Chem. Eng. Technol., 2012, 35, 1515-1519.
[9]
Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis, 2005, 17(1), 7-14.
[10]
Kim, S.N.; Rusling, J.F.; Papadimitrakopoulos, F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater., 2007, 19(20), 3214-3228.
[11]
Asheghali, D.; Vichchulada, P.; Lay, M.D. Conversion of metallic single-walled carbon nanotube networks to semiconducting through electrochemical ornamentation. J. Am. Chem. Soc., 2013, 135, 7511-7522.
[12]
Mohammadi, A.; Moghaddam, A.B.; Eilkhanizadeh, K.; Alikhani, E.; Mozaffari, S.; Yavari, T. Electro-oxidation and simultaneous determination of amlodipine and atorvastatin in commercial tablets using carbon nanotube modified electrode. Micro Nano Lett., 2013, 8, 413-417.
[13]
Kharisov, B.I.; Kharisova, O.V.; Gutierrez, H.L.; Méndez, V.O. Recent advances on the soluble carbon nanotubes. Ind. Eng. Chem. Res., 2009, 48(2), 572-590.
[14]
O’Connell, M.J.; Poul, P.; Ericson, L.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, D.; Smalley, R.E. Reversibl water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, 342, 265-271.
[15]
Wu, Z.; Xu, Y.; Zhang, X.; Shen, G.; Yu, R. Microwave plasma treated carbon nano-tubes and their electrochemical biosensing application. Talanta, 2007, 72, 1336-1341.
[16]
Matyshevska, O.P.; Karlasha, A.Y.; Shtogun, Y.V.; Benilov, A.; Kirgizov, Y. Gorchinskyy, K.O.; Buzaneva, E.V.; Prylutskyy, Y.I.; Scharff, P. Self-organizing DNA/carbon nanotube molecular films. Mat. Sci. Eng. C-Biomim, 2001, 15(1-2), 249-252.
[17]
Krizkova, S.; Heger, Z.; Zalewska, M.; Moulick, A.; Adam, V.; Kizek, R. Nanotechnologies in protein microarrays. Nanomedicine, 2015, 10(17), 2743-2755.
[18]
Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C.D.; Briand, J-P.; Prato, M.; Bianco, A.; Kostarelos, K. Binding and condensation of plasmid DNA onto functionalized carbon nano-tubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc., 2005, 127(12), 4388-4396.
[19]
Yang, X.Y.; Liu, Z.F.; Mao, J.; Wang, S.J.; Ma, Y.F.; Chen, Y.S. The preparation of func-tionalized single walled carbon nanotubes as high efficiency DNA carriers. Chin. Chem. Lett., 2007, 18, 1551-1553.
[20]
Ye, J-S.; Li, X-L.; Sheu, F-S. Novel mesoporous silicas as electrochemical biosensors In: Nanostructured Materials for Electrochemical Biosensors; Yogeswaran Umasankar; S. Ashok Kumar, Shen-Ming. Chen, Eds.; Nova Science Publishers, Inc.: NY, 2009; pp. 303-316.
[21]
Lei, C.; Shin, Y.; Magnuson, J.K.; Fryxell, G.; Lasure, L.L.; Elliott, D.C.; Liu, J.; Ackerman, E.J. Characterization of functionalized nanoporous supports for protein confinement. Nanotechnology, 2006, 17, 5531-5538.
[22]
Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710-712.
[23]
Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.D.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B.; Schlenker, J.L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114, 10834-10843.
[24]
Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.F.; Willner, I. “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science, 2003, 299, 1877-1881.
[25]
Hasanzadeh, M.; Shadjou, N.; de la Guardia, M.; Eskandani, M.; Sheikhzadeh, P. Mesoporous silica-based materials for use in biosensors. TrAC. Trends Anal. Chem., 2012, 33, 117-129.
[26]
Nabid, M.R.; Shamsianpour, M.; Sedghi, R.; Moghaddam, A.B. Enzyme-catalyzed synthesis of conducting polyaniline nanocomposites with pure and functionalized carbon nanotubes. Chem. Eng. Technol., 2012, 35, 1707-1712.
[27]
Radi, A-E.; Nassef, H.M.; Eissa, A. Voltammetric and ultraviolet–visible spectroscopic studies on the interaction of etoposide with deoxyribonucleic acid. Electrochim. Acta, 2013, 113, 164-169.
[28]
Takimoto, C.H.; Calvo, E. Principles of oncologic pharmacotherapy. In: Cancer Management: A Multidisciplinary Approach; R., Pazdur; L.D., Wagman; K.A., Camphausen; W.J., Hoskins, Eds.; UBM Medica: London, UK, 2008; pp. 42-58.
[29]
Kagan, V.E.; Kuzmenko, A.I.; Tyurina, Y.Y.; Shvedova, A.A.; Matsura, T.; Yalowich, J.C. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: Role of myeloperoxidase. Cancer Res., 2001, 61, 7777-7784.
[30]
Chen, C.; Liang, B.; Lu, D.; Ogino, A.; Wang, X.; Nagatsu, M. Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon, 2010, 48, 939-948.
[31]
Wei, Y.; Yang, R.; Chen, X.; Wang, L.; Liu, J-H.; Huang, X-J. A cation trap for anodic stripping voltammetry: NH3–plasma treated carbon nanotubes for adsorption and detection of metal ions. Anal. Chim. Acta, 2012, 755, 54-61.
[32]
Parida, K.M.; Rath, D. Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction. J. Mol. Catal.A: Chem., 2009, 310, 93-100.
[33]
Melendez-Ortiz, H.I.; Garcia-Cerda, L.A.; Olivares-Maldonado, Y.; Castruita, G.; Mercado-Silva, J.A.; Perera-Mercado, Y.A. Preparation of spherical MCM-41 molecular sieve at room temperature: Influence of the synthesis conditions in the structural properties. Ceram. Int., 2012, 38, 6353-6358.
[34]
Zhu, L.; Zhou, L.; Huang, N.; Cui, W.; Liu, Z.; Xiao, K.; Zhou, Z. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from rhodotorula glutinis JN-1 in a recirculating packed-bed reactor. Plos One, 2014, 9, e108586-e.
[35]
Kannan, K.; Jasra, R.V. Immobilization of alkaline serine endopeptidase from Bacillus licheniformis on SBA-15 and MCF by surface covalent binding. J. Mol. Catal., B Enzym., 2009, 56, 34-40.
[36]
Wang, X.; Lin, K.S.; Chan, J.C.C.; Cheng, S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B, 2007, 109, 1763-1769.
[37]
Li, J.; Miao, M.; Hao, Y.; Zhao, J.; Sun, X.; Wang, L. Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(VI). J. Colloid Interf Sci., 2008, 318, 309-314.
[38]
Wang, J.; Kawde, A.N.; Musameh, M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst, 2003, 128, 912-916.
[39]
Brahman, P.K.; Dar, R.A.; Pitre, K.S. DNA-functionalized electrochemical biosensor for detection of vitamin B1 using electrochemically treated multiwalled carbon nanotube paste electrode by voltammetric methods. Sensor. Actuat B Chem., 2013, 177, 807-812.
[40]
Wang, J.; Musameh, M.; Lin, Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc., 2003, 125, 2408-2409.
[41]
Bollo, S.; Ferreyra, N.F.; Rivas, G.A. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in chitosan. Electroanalysis, 2007, 19(7-8), 833-840.
[42]
Luque, G.L.; Ferreyra, N.F.; Granero, A.; Bollo, S.; Rivas, G.A. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polyethylenimine. Electrochim. Acta, 2011, 56, 9121-9126.
[43]
Yin, H.; Zhou, Y.; Qiang, Ma.; Ai, S.; Ju, P.; Zhu, L.; Lu, L. Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem., 2010, 45, 1707-1712.
[44]
Wang, Z.; Xiao, S.; Chen, Y. Beta-cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J. Electroanal. Chem., 2006, 589, 237-242.
[45]
Wang, J.; Li, M.; Shi, Z.; Li, N.; Gu, Z. Electrochemistry of DNA at single-wall carbon nanotubes. Electroanalysis, 2004, 16, 140-144.
[46]
Adams, R.N. Carbon paste electrodes. Anal. Chem., 1958, 30(9), 1576-1576.
[47]
Moghaddam, A.B.; Mohammadi, A.; Mohammadi, S.; Rayeji, D.; Dinarvand, R.; Baghi, M.; Walker, R.B. The determination of acetaminophen using a carbon nanotube:graphite-based electrode. Microchim. Acta, 2010, 171, 377-384.
[48]
Adams, R.N. Carbon paste electrodes. A review. Rev. Polarog. (Kyoto), 1963, 11, 71-78.