[1]
Jablonski, J. N-nitrosodimethylamine - toxicologic significance. Post Hig. Med. Dosw., 2001, 55, 317-337.
[2]
Lijinsky, W. Chemistry and biology of N-nitroso compounds; Cambridge University Press: Cambridge , 1992.
[3]
Tricker, A.R.; Preussmann, R. Carcinogenic N-nitrosamines in the diet: Occurrence, formation, mechanisms, and carcinogenic potential. Mutat. Res., 1991, 259, 277-289.
[4]
Zeilmaker, M.J.; Bakker, M.I.; Schothorst, R.; Slob, W. Risk assessment of N-nitrosodimethylamine formed endogenously after fish-with-vegetable meals. Toxicol. Sci., 2010, 116, 323-335.
[5]
Vermeer, I.T.; Engels, L.G.; Pachen, D.M.; Dallinga, J.W.; Kleinjans, J.C.; van Maanen, J.M. Intragastric volatile N-nitrosamines, nitrite, pH, and Helicobacter pylori during long-term treatment with omeprazole. Gastroenterology, 2001, 121, 517-525.
[6]
Vermeer, I.T.; Pachen, D.M.; Dallinga, J.W.; Kleinjans, J.C.; van Maanen, J.M. Volatile N-nitrosamine formation after intake of nitrate at the ADI level in combination with an amine-rich diet. Environ. Health Perspect., 1998, 106, 459-463.
[7]
Graves, R.J.; Swann, P.F. Clearance of N-nitrosodimethylamine and N-nitrosodiethylamine by the perfused rat liver. Relationship to the Km and Vmax for nitrosamine metabolism. Biochem. Pharmacol., 1993, 45, 983-989.
[8]
Beyrau, M.; Bodkin, J.V.; Nourshargh, S. Neutrophil heterogeneity in health and disease: A revitalized avenue in inflammation and immunity. Open Biol., 2012, 2, 120-134.
[9]
Silvestre-Roig, C.; Hidalgo, A.; Soehnlein, O. Neutrophil heterogeneity: Implications for homeostasis and pathogenesis. Blood, 2016, 5, 2173-2181.
[10]
Lirk, P.; Hoffmann, G.; Rieder, J. Inducible nitric oxide synthase; Time for reap-praisal. Curr. Drug Targets, 2002, 1, 89-108.
[11]
Moodley, Y.P. The role of inducible nitric oxide in health and disease. Curr. Diagn. Pathol., 2002, 8, 297-304.
[12]
Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J., 2001, 357, 593-615.
[13]
Cedergren, J.; Follin, P.; Forslund, T.; Lindmark, M.; Sundqvist, T.; Skogh, T. Inducible Nitric Oxide Synthase (NOS II) is constitutive in human neutrophils. APMIS, 2003, 111, 963-968.
[14]
Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J., 2012, 33, 829-837.
[15]
Zhang, Y.; Dong, C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell. Mol. Life Sci., 2007, 64, 2771-2789.
[16]
Pearson, G.; Robinson, F.; Gibson, T.B.; Xu, B.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-Activated Protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev., 2001, 22, 153-183.
[17]
Symons, A.; Beinke, S.; Ley, S.C. MAP kinase kinase kinases and innate immunity. Trends Immunol., 2006, 27, 40-48.
[18]
Karin, M.; Liu, Z.; Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol., 1997, 9, 240-246.
[19]
Whitmarsh, A.J.; Davis, R.J. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. , 1996, 74, 589-607.
[20]
Wu, Z.H.; Miyamoto, S. Many faces of NF-κB signaling induced by genotoxic stress. J. Mol. Med. , 2007, 85, 1187-1202.
[21]
Hayden, M.S.; Ghosh, S. Signaling to NF-κB. Genes Dev., 2004, 18, 2195-2224.
[22]
Nishikori, M. Classical and alternative NF-κB activation pathways and their roles in lymphoid malignancies. J. Clin. Exp. Hematopathol., 2005, 45, 15-24.
[23]
Perkins, N.D. Integrating cell-signaling pathways with NF-κB and IKK function. Mol. Cell. Biol., 2007, 8, 49-62.
[25]
Foster, F.M.; Traer, C.J.; Abraham, S.M.; Fry, M.J. The phosphoinositide (PI) 3-kinase family. J. Cell Sci., 2003, 116, 3037-3040.
[27]
Hanada, M.; Feng, J.; Hemmings, B.A. Structure, regulation and function of PKB/AKT-a major therapeutic target. Biochim. Biophys. Acta, 2004, 1697, 3-16.
[28]
Jakubowicz-Gil, J. Inhibitors of PI3K-Akt/PKB-mTOR pathway in glioma therapy. Post. Biol. Kom., 2009, 36, 189-201.
[29]
Koyasu, S. The role of PI3K in immune cells. Nat. Immunol., 2003, 4, 313-319.
[30]
Ihle, J.N. The Stat family in cytokine signaling. Curr. Opin. Cell Biol., 2001, 13, 211-217.
[31]
Levy, D.E.; Darnell, J.E. Stats: Transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol., 2002, 3, 651-662.
[32]
Murray, P.J. The JAK-STAT signaling pathway: Input and output integration. J. Immunol., 2007, 178, 2623-2629.
[33]
Yamaoka, K.; Saharinen, P.; Pesu, M.; Holt, V.E.; Silvennoinen, O.; O’Shea, J.J. The Janus kinases (Jaks). Genome Biol., 2004, 5, 253-259.
[34]
Richard, A.J. Stephens, J.M. The role of JAK-STAT signaling in adipose tissue function. Biochim. Biophys. Acta, 2014, 1842, 431-439.
[35]
Kiu, H. Nicholson, S.E. Biology and significance of the JAK/ STAT signalling pathways. Growth Factors, 2012, 30, 88-106.
[36]
Ratajczak-Wrona, W.; Jablonska, E.; Jablonski, J.; Marcinczyk, M. Induction of expression of iNOS by N-nitrosodimethylamine (NDMA) in human leukocytes. Immunopharm. Immunot., 2009, 31, 661-668.
[37]
Ratajczak-Wrona, W.; Jablonska, E.; Garley, M.; Jablonski, J.; Radziwon, P. Role of the JNK signalling pathway in the induction of iNOS expression in neutrophils and mononuclear cells exposed to N-nitrosodimethylamine (NDMA). APMIS, 2011, 119, 431-441.
[38]
Stempin, C.C.; Garrido, V.V.; Dulgerian, L.R.; Cerban, F.M. Cruzipain and SP600125 induce p38 activation, alter NO/arginase balance and favor the survival of Trypanosoma cruzi in macrophages. Acta Trop., 2008, 106, 119-127.
[39]
Ratajczak-Wrona, W.; Jablonska, E.; Garley, M.; Jablonski, J.; Radziwon, P. Role of ERK1/2 kinase in the expression of iNOS by NDMA in human neutrophils. Indian J. Exp. Biol., 2013, 51, 73-80.
[40]
Kang, K.W.; Choi, S.Y.; Cho, M.K.; Lee, C.H.; Kim, S.G. Thrombin induces nitric-oxide synthase via Galpha12/13-coupled protein kinase C-dependent I-kappaBalpha phosphorylation and JNK-mediated I-kappaBalpha degradation. J. Biol. Chem., 2003, 278, 17368-17378.
[41]
Zhongyan, W.; Peter, B. Salicylate inhibition of extracellular signal-regulated kinases and inducible nitric oxide synthase. Hypertension, 1999, 34, 1259-1264.
[42]
Ratajczak-Wrona, W.; Jablonska, E.; Garley, M.; Jablonski, J.; Radziwon, P.; Iwaniuk, A. The role of MAP kinases in the induction of iNOS expression in neutrophils exposed to NDMA: The involvement transcription factors. Adv. Med. Sci., 2013, 58, 265-273.
[43]
Ratajczak-Wrona, W.; Jablonska, E.; Garley, M.; Jablonski, J.; Radziwon, P.; Iwaniuk, A. Role of AP-1 family proteins in regulation of inducible Nitric Oxide Synthase (iNOS) in human neutrophils. J. Immunotoxicol., 2013, 10, 32-39.
[44]
Mollinedo, F.; Vaquerizo, M.J.; Naranjo, J.R. Expression of c-jun, jun B and jun D proto-oncogenes in human peripheral-blood granulocytes. Biochem. J., 1991, 273, 477-479.
[45]
Kanai, K.; Asano, K.; Hisamitsu, T.; Suzaki, H. Suppression of matrix metalloproteinase-9 production from neutrophils by a macrolide antibiotic, roxithromycin, in vitro. Mediators Inflamm., 2004, 13, 313-319.
[46]
Marks-Konczalik, J.; Chu, S.C.; Moss, J. Cytokine mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kB-binding sites. J. Biol. Chem., 1998, 273, 22201-22208.
[47]
Ratajczak-Wrona, W.; Jablonska, E.; Garley, M.; Jablonski, J.; Radziwon, P.; Iwaniuk, A.; Grubczak, K. PI3K-Akt/PKB signaling pathway in neutrophils and mononuclear cells exposed to N-Nitrosodimethylamine. J. Immunotoxicol., 2014, 11, 231-237.
[48]
Díaz-Guerra, M.J.M.; Castrillo, A.; Martín-Sanz, P.; Boscá, L. Negative regulation by phosphatidylinositol 3-kinase of inducible nitric oxide synthase expression in macrophages. J. Immunol., 1999, 162, 6184-6190.
[49]
Ratajczak-Wrona, W.; Jablonska, E.; Garley, M.; Jablonski, J.; Radziwon, P.; Iwaniuk, A. Activation of the JAK/STAT pathway in human neutrophils by NDMA. Turkish. J. Biol., 2013, 37, 629-637.
[50]
Schmidt, N.; Pautz, A.; Art, J.; Rauschkolb, P.; Jung, M.; Erkel, G.; Goldring, M.B.; Kleinert, H. Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocytes. Biochem. Pharmacol., 2010, 79, 722-732.