Review Article

类黄酮与血小板溶解性血栓性疾病

卷 26, 期 39, 2019

页: [7035 - 7047] 页: 13

弟呕挨: 10.2174/0929867325666180417170218

价格: $65

摘要

血栓形成疾病的特征使形成不必要的血栓的可能性增加,这可能是由于凝血级联反应或循环血小板的激活所致。血小板或血小板在止血中起重要作用,但血小板功能异常会导致许多心血管并发症的发展,包括血栓形成疾病。在病理情况下,血小板与各种血栓形成疾病的发展有关,包括动脉粥样硬化,动脉血栓形成和中风,深静脉血栓形成和肺栓塞。因此,血小板是许多抗血栓形成策略的目标。黄酮类化合物是在水果和蔬菜中普遍存在的大量多酚类物质,由于它们对人类健康有益,包括降低心血管疾病的风险,因此引起了广泛关注。据报道,类黄酮可通过减弱激动剂诱导的GPIIb / IIIa受体激活,细胞内游离Ca2 +的动员,颗粒胞吐作用以及不同信号分子(如促分裂原激活的蛋白激酶或磷脂酶)的激活来降低血小板活性。这篇综述总结了有关黄酮调节血小板活化的最新研究,特别关注与血栓形成疾病有关的事件。

关键词: 血小板,血栓性疾病,类黄酮,心血管疾病,GPIIb / IIIa受体,抗血栓形成策略。

[1]
Sauls, D.L.; Lockhart, E.; Warren, M.E.; Lenkowski, A.; Wilhelm, S.E.; Hoffman, M. Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry, 2006, 45(8), 2480-2487.
[http://dx.doi.org/10.1021/bi052076j] [PMID: 16489740]
[2]
Schafer, A.I.; Levine, M.N.; Konkle, B.A.; Kearon, C. Thrombotic disorders: diagnosis and treatment. Hematology (Am. Soc. Hematol. Educ. Program), 2003, 520-539.
[http://dx.doi.org/10.1182/asheducation-2003.1.520] [PMID: 14633797]
[3]
Saavedra, F.R.; Redondo, P.C.; Hernández-Cruz, J.M.; Salido, G.M.; Pariente, J.A.; Rosado, J.A. Store-operated Ca(2+) entry and tyrosine kinase pp60(src) hyperactivity are modulated by hyperglycemia in platelets from patients with non insulin-dependent diabetes mellitus. Arch. Biochem. Biophys., 2004, 432(2), 261-268.
[http://dx.doi.org/10.1016/j.abb.2004.09.034] [PMID: 15542065]
[4]
El Haouari, M.; Rosado, J.A. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review. Blood Cells Mol. Dis., 2008, 41(1), 119-123.
[http://dx.doi.org/10.1016/j.bcmd.2008.02.010] [PMID: 18387322]
[5]
Chang, Y.; Bluteau, D.; Debili, N.; Vainchenker, W. From hematopoietic stem cells to platelets. J. Thromb. Haemost., 2007, 5(Suppl. 1), 318-327.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02472.x] [PMID: 17635743]
[6]
Rosado, J.A.; Sage, S.O. Platelets in thrombotic and non-thrombotic disorders. In: Pathophysiology, pharmacology and therapeutics; Gresele, P.; Page, C.P.; Fuster, V.; Vermylen, J., Eds.; Cambridge University Press: Cambridge, 2000; pp. 260-271.
[7]
Hartwig, J.H. Mechanisms of actin rearrangements mediating platelet activation. J. Cell Biol., 1992, 118(6), 1421-1442.
[http://dx.doi.org/10.1083/jcb.118.6.1421] [PMID: 1325975]
[8]
Rosado, J.A.; Jenner, S.; Sage, S.O. A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J. Biol. Chem., 2000, 275(11), 7527-7533.
[http://dx.doi.org/10.1074/jbc.275.11.7527] [PMID: 10713057]
[9]
Rosado, J.A.; López, J.J.; Harper, A.G.; Harper, M.T.; Redondo, P.C.; Pariente, J.A.; Sage, S.O.; Salido, G.M. Two pathways for store-mediated calcium entry differentially dependent on the actin cytoskeleton in human platelets. J. Biol. Chem., 2004, 279(28), 29231-29235.
[http://dx.doi.org/10.1074/jbc.M403509200] [PMID: 15136566]
[10]
Escolar, G.; White, J.G. The platelet open canalicular system: a final common pathway. Blood Cells, 1991, 17(3), 467-485.
[PMID: 1760557]
[11]
Salido, G.M.; Jardín, I.; Rosado, J.A. The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. Adv. Exp. Med. Biol., 2011, 704, 413-433.
[http://dx.doi.org/10.1007/978-94-007-0265-3_23] [PMID: 21290309]
[12]
Ebbeling, L.; Robertson, C.; McNicol, A.; Gerrard, J.M. Rapid ultrastructural changes in the dense tubular system following platelet activation. Blood, 1992, 80(3), 718-723.
[http://dx.doi.org/10.1182/blood.V80.3.718.718] [PMID: 1322202]
[13]
King, S.M.; Reed, G.L. Development of platelet secretory granules. Semin. Cell Dev. Biol., 2002, 13(4), 293-302.
[http://dx.doi.org/10.1016/S1084952102000599] [PMID: 12243729]
[14]
Rolf, M.G.; Brearley, C.A.; Mahaut-Smith, M.P. Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha,beta-methylene ATP. Thromb. Haemost., 2001, 85(2), 303-308.
[http://dx.doi.org/10.1055/s-0037-1615684] [PMID: 11246552]
[15]
Xu, X.R.; Carrim, N.; Neves, M.A.; McKeown, T.; Stratton, T.W.; Coelho, R.M.; Lei, X.; Chen, P.; Xu, J.; Dai, X.; Li, B.X.; Ni, H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb. J., 2016, 14(Suppl. 1), 29.
[http://dx.doi.org/10.1186/s12959-016-0100-6] [PMID: 27766055]
[16]
Nieswandt, B.; Pleines, I.; Bender, M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J. Thromb. Haemost., 2011, 9(Suppl. 1), 92-104.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04361.x] [PMID: 21781245]
[17]
Golebiewska, E.M.; Poole, A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev., 2015, 29(3), 153-162.
[http://dx.doi.org/10.1016/j.blre.2014.10.003] [PMID: 25468720]
[18]
King, S.M.; McNamee, R.A.; Houng, A.K.; Patel, R.; Brands, M.; Reed, G.L. Platelet dense-granule secretion plays a critical role in thrombosis and subsequent vascular remodeling in atherosclerotic mice. Circulation, 2009, 120(9), 785-791.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.845461] [PMID: 19687360]
[19]
Harper, A.G.; Mason, M.J.; Sage, S.O. A key role for dense granule secretion in potentiation of the Ca2+ signal arising from store-operated calcium entry in human platelets. Cell Calcium, 2009, 45(5), 413-420.
[http://dx.doi.org/10.1016/j.ceca.2009.02.003] [PMID: 19285721]
[20]
Lopez, E.; Bermejo, N.; Berna-Erro, A.; Alonso, N.; Salido, G.M.; Redondo, P.C.; Rosado, J.A. Relationship between calcium mobilization and platelet α- and δ-granule secretion. A role for TRPC6 in thrombin-evoked δ-granule exocytosis. Arch. Biochem. Biophys., 2015, 585, 75-81.
[http://dx.doi.org/10.1016/j.abb.2015.09.012] [PMID: 26386308]
[21]
Jackson, S.P. The growing complexity of platelet aggregation. Blood, 2007, 109(12), 5087-5095.
[http://dx.doi.org/10.1182/blood-2006-12-027698] [PMID: 17311994]
[22]
Lindemann, S.; Krämer, B.; Seizer, P.; Gawaz, M. Platelets, inflammation and atherosclerosis. J. Thromb. Haemost., 2007, 5(Suppl. 1), 203-211.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02517.x] [PMID: 17635728]
[23]
Massberg, S.; Brand, K.; Grüner, S.; Page, S.; Müller, E.; Müller, I.; Bergmeier, W.; Richter, T.; Lorenz, M.; Konrad, I.; Nieswandt, B.; Gawaz, M. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med., 2002, 196(7), 887-896.
[http://dx.doi.org/10.1084/jem.20012044] [PMID: 12370251]
[24]
Patzelt, J.; Verschoor, A.; Langer, H.F. Platelets and the complement cascade in atherosclerosis. Front. Physiol., 2015, 6, 49.
[http://dx.doi.org/10.3389/fphys.2015.00049] [PMID: 25784879]
[25]
von Hundelshausen, P.; Schmitt, M.M. Platelets and their chemokines in atherosclerosis-clinical applications. Front. Physiol., 2014, 5, 294.
[http://dx.doi.org/10.3389/fphys.2014.00294] [PMID: 25152735]
[26]
Lievens, D.; Eijgelaar, W.J.; Biessen, E.A.; Daemen, M.J.; Lutgens, E. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb. Haemost., 2009, 102(2), 206-214.
[http://dx.doi.org/10.1160/TH09-01-0029] [PMID: 19652870]
[27]
Rautou, P.E.; Vion, A.C.; Amabile, N.; Chironi, G.; Simon, A.; Tedgui, A.; Boulanger, C.M. Microparticles, vascular function, and atherothrombosis. Circ. Res., 2011, 109(5), 593-606.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233163] [PMID: 21852557]
[28]
Morel, O.; Jesel, L.; Freyssinet, J.M.; Toti, F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol., 2011, 31(1), 15-26.
[http://dx.doi.org/10.1161/ATVBAHA.109.200956] [PMID: 21160064]
[29]
Coleman, M.L.; Sahai, E.A.; Yeo, M.; Bosch, M.; Dewar, A.; Olson, M.F. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol., 2001, 3(4), 339-345.
[http://dx.doi.org/10.1038/35070009] [PMID: 11283606]
[30]
Sebbagh, M.; Renvoizé, C.; Hamelin, J.; Riché, N.; Bertoglio, J.; Bréard, J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat. Cell Biol., 2001, 3(4), 346-352.
[http://dx.doi.org/10.1038/35070019] [PMID: 11283607]
[31]
Dean, W.L.; Lee, M.J.; Cummins, T.D.; Schultz, D.J.; Powell, D.W. Proteomic and functional characterisation of platelet microparticle size classes. Thromb. Haemost., 2009, 102(4), 711-718.
[http://dx.doi.org/10.1160/TH09-04-243] [PMID: 19806257]
[32]
Boulanger, C.M.; Amabile, N.; Tedgui, A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension, 2006, 48(2), 180-186.
[http://dx.doi.org/10.1161/01.HYP.0000231507.00962.b5] [PMID: 16801490]
[33]
Mause, S.F.; von Hundelshausen, P.; Zernecke, A.; Koenen, R.R.; Weber, C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler. Thromb. Vasc. Biol., 2005, 25(7), 1512-1518.
[http://dx.doi.org/10.1161/01.ATV.0000170133.43608.37] [PMID: 15890969]
[34]
Jickling, G.C.; Liu, D.; Ander, B.P.; Stamova, B.; Zhan, X.; Sharp, F.R. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J. Cereb. Blood Flow Metab., 2015, 35(6), 888-901.
[http://dx.doi.org/10.1038/jcbfm.2015.45] [PMID: 25806703]
[35]
Voetsch, B.; Loscalzo, J. Genetic determinants of arterial thrombosis. Arterioscler. Thromb. Vasc. Biol., 2004, 24(2), 216-229.
[http://dx.doi.org/10.1161/01.ATV.0000107402.79771.fc] [PMID: 14615395]
[36]
Nylander, S.; Schulz, R. Effects of P2Y12 receptor antagonists beyond platelet inhibition--comparison of ticagrelor with thienopyridines. Br. J. Pharmacol., 2016, 173(7), 1163-1178.
[http://dx.doi.org/10.1111/bph.13429] [PMID: 26758983]
[37]
Duran, X.; Sánchez, S.; Vilahur, G.; Badimon, L. Protective effects of triflusal on secondary thrombus growth and vascular cyclooxygenase-2. J. Thromb. Haemost., 2008, 6(8), 1385-1392.
[http://dx.doi.org/10.1111/j.1538-7836.2008.03036.x] [PMID: 18503633]
[38]
van Lummel, M.; Pennings, M.T.; Derksen, R.H.; Urbanus, R.T.; Lutters, B.C.; Kaldenhoven, N.; de Groot, P.G. The binding site in beta2-glycoprotein I for ApoER2′ on platelets is located in domain V. J. Biol. Chem., 2005, 280(44), 36729-36736.
[http://dx.doi.org/10.1074/jbc.M504172200] [PMID: 16091370]
[39]
Shi, T.; Giannakopoulos, B.; Yan, X.; Yu, P.; Berndt, M.C.; Andrews, R.K.; Rivera, J.; Iverson, G.M.; Cockerill, K.A.; Linnik, M.D.; Krilis, S.A. Anti-beta2-glycoprotein I antibodies in complex with beta2-glycoprotein I can activate platelets in a dysregulated manner via glycoprotein Ib-IX-V. Arthritis Rheum., 2006, 54(8), 2558-2567.
[http://dx.doi.org/10.1002/art.21968] [PMID: 16868978]
[40]
Urbanus, R.T.; Pennings, M.T.; Derksen, R.H.; de Groot, P.G. Platelet activation by dimeric beta2-glycoprotein I requires signaling via both glycoprotein Ibalpha and apolipoprotein E receptor 2′. J. Thromb. Haemost., 2008, 6(8), 1405-1412.
[http://dx.doi.org/10.1111/j.1538-7836.2008.03021.x] [PMID: 18485085]
[41]
Mehrbod, M.; Trisno, S.; Mofrad, M.R. On the activation of integrin αIIbβ3: outside-in and inside-out pathways. Biophys. J., 2013, 105(6), 1304-1315.
[http://dx.doi.org/10.1016/j.bpj.2013.07.055] [PMID: 24047981]
[42]
Xu, Z.; Chen, X.; Zhi, H.; Gao, J.; Bialkowska, K.; Byzova, T.V.; Pluskota, E.; White, G.C., II; Liu, J.; Plow, E.F.; Ma, Y.Q. Direct interaction of kindlin-3 with integrin αIIbβ3 in platelets is required for supporting arterial thrombosis in mice. Arterioscler. Thromb. Vasc. Biol., 2014, 34(9), 1961-1967.
[http://dx.doi.org/10.1161/ATVBAHA.114.303851] [PMID: 24969775]
[43]
Induruwa, I.; Jung, S.M.; Warburton, E.A. Beyond antiplatelets: The role of glycoprotein VI in ischemic stroke. Int. J. Stroke, 2016, 11(6), 618-625.
[http://dx.doi.org/10.1177/1747493016654532] [PMID: 27312676]
[44]
Aleman, M.M.; Walton, B.L.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen and red blood cells in venous thrombosis. Thromb. Res., 2014, 133(Suppl. 1), S38-S40.
[http://dx.doi.org/10.1016/j.thromres.2014.03.017] [PMID: 24759140]
[45]
Walton, B.L.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J. Thromb. Haemost., 2015, 13(Suppl. 1), S208-S215.
[http://dx.doi.org/10.1111/jth.12918] [PMID: 26149026]
[46]
Payne, H.; Ponomaryov, T.; Watson, S.P.; Brill, A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood, 2017, 129(14), 2013-2020.
[http://dx.doi.org/10.1182/blood-2016-09-742999] [PMID: 28104688]
[47]
Page, M.J.; Lourenço, A.L.; David, T.; LeBeau, A.M.; Cattaruzza, F.; Castro, H.C.; VanBrocklin, H.F.; Coughlin, S.R.; Craik, C.S. Non-invasive imaging and cellular tracking of pulmonary emboli by near-infrared fluorescence and positron-emission tomography. Nat. Commun., 2015, 6, 8448.
[http://dx.doi.org/10.1038/ncomms9448] [PMID: 26423607]
[48]
Heidt, T.; Ehrismann, S.; Hövener, J.B.; Neudorfer, I.; Hilgendorf, I.; Reisert, M.; Hagemeyer, C.E.; Zirlik, A.; Reinöhl, J.; Bode, C.; Peter, K.; von Elverfeldt, D.; von Zur Muhlen, C. Molecular imaging of activated platelets allows the detection of pulmonary embolism with magnetic resonance imaging. Sci. Rep., 2016, 6, 25044.
[http://dx.doi.org/10.1038/srep25044] [PMID: 27138487]
[49]
Lim, B.; Yao, Y.; Huang, A.L.; Yap, M.L.; Flierl, U.; Palasubramaniam, J.; Zaldivia, M.T.K.; Wang, X.; Peter, K. A unique recombinant fluoroprobe targeting activated platelets allows in vivo detection of arterial thrombosis and pulmonary embolism using a novel three-dimensional fluorescence emission computed tomography (FLECT) technology. Theranostics, 2017, 7(5), 1047-1061.
[http://dx.doi.org/10.7150/thno.18099] [PMID: 28435447]
[50]
Sheu, J.R.; Hsiao, G.; Chou, P.H.; Shen, M.Y.; Chou, D.S. Mechanisms involved in the antiplatelet activity of rutin, a glycoside of the flavonol quercetin, in human platelets. J. Agric. Food Chem., 2004, 52(14), 4414-4418.
[http://dx.doi.org/10.1021/jf040059f] [PMID: 15237945]
[51]
Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 2005, 352(16), 1685-1695.
[http://dx.doi.org/10.1056/NEJMra043430] [PMID: 15843671]
[52]
Barrett, N.E.; Holbrook, L.; Jones, S.; Kaiser, W.J.; Moraes, L.A.; Rana, R.; Sage, T.; Stanley, R.G.; Tucker, K.L.; Wright, B.; Gibbins, J.M. Future innovations in anti-platelet therapies. Br. J. Pharmacol., 2008, 154(5), 918-939.
[http://dx.doi.org/10.1038/bjp.2008.151] [PMID: 18587441]
[53]
Badimón, L.; Vilahur, G.; Padró, T. Lipoproteins, platelets and atherothrombosis. Rev. Esp. Cardiol., 2009, 62(10), 1161-1178.
[PMID: 19793522]
[54]
Michelson, A.D. Antiplatelet therapies for the treatment of cardiovascular disease. Nat. Rev. Drug Discov., 2010, 9(2), 154-169.
[http://dx.doi.org/10.1038/nrd2957] [PMID: 20118963]
[55]
Bagatini, M.D.; Martins, C.C.; Battisti, V.; Gasparetto, D.; da Rosa, C.S.; Spanevello, R.M.; Ahmed, M.; Schmatz, R.; Schetinger, M.R.; Morsch, V.M. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessels, 2011, 26(1), 55-63.
[http://dx.doi.org/10.1007/s00380-010-0029-9] [PMID: 20978900]
[56]
Borst, O.; Walker, B.; Münzer, P.; Russo, A.; Schmid, E.; Faggio, C.; Bigalke, B.; Laufer, S.; Gawaz, M.; Lang, F. Skepinone-L, a novel potent and highly selective inhibitor of p38 MAP kinase, effectively impairs platelet activation and thrombus formation. Cell. Physiol. Biochem., 2013, 31(6), 914-924.
[http://dx.doi.org/10.1159/000350110] [PMID: 23817201]
[57]
Bhatt, D.L.; Topol, E.J. Scientific and therapeutic advances in antiplatelet therapy. Nat. Rev. Drug Discov., 2003, 2(1), 15-28.
[http://dx.doi.org/10.1038/nrd985] [PMID: 12509756]
[58]
Mackman, N. Triggers, targets and treatments for thrombosis. Nature, 2008, 451(7181), 914-918.
[http://dx.doi.org/10.1038/nature06797] [PMID: 18288180]
[59]
Connolly, B.J.; Pearce, L.A.; Kurth, T.; Kase, C.S.; Hart, R.G. Aspirin therapy and risk of subdural hematoma: meta-analysis of randomized clinical trials. J. Stroke Cerebrovasc. Dis., 2013, 22(4), 444-448.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2013.01.007] [PMID: 23422345]
[60]
Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Quantitation of flavonoid constituents in citrus fruits. J. Agric. Food Chem., 1999, 47(9), 3565-3571.
[http://dx.doi.org/10.1021/jf990153+] [PMID: 10552686]
[61]
Xu, X.; Wang, H.J.; Murphy, P.A.; Cook, L.; Hendrich, S. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J. Nutr., 1994, 124(6), 825-832.
[http://dx.doi.org/10.1093/jn/124.6.825] [PMID: 8207540]
[62]
Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem., 2003, 51(21), 6347-6353.
[http://dx.doi.org/10.1021/jf0346298] [PMID: 14518966]
[63]
Ben Amor, N.; Bouaziz, A.; Romera-Castillo, C.; Salido, S.; Linares-Palomino, P.J.; Bartegi, A.; Salido, G.M.; Rosado, J.A. Characterization of the intracellular mechanisms involved in the antiaggregant properties of cinnamtannin B-1 from bay wood in human platelets. J. Med. Chem., 2007, 50(16), 3937-3944.
[http://dx.doi.org/10.1021/jm070508d] [PMID: 17602466]
[64]
Bouaziz, A.; Romera-Castillo, C.; Salido, S.; Linares-Palomino, P.J.; Altarejos, J.; Bartegi, A.; Rosado, J.A.; Salido, G.M. Cinnamtannin B-1 from bay wood exhibits antiapoptotic effects in human platelets. Apoptosis, 2007, 12(3), 489-498.
[http://dx.doi.org/10.1007/s10495-006-0014-z] [PMID: 17195094]
[65]
Bouaziz, A.; Salido, S.; Linares-Palomino, P.J.; Sanchez, A.; Altarejos, J.; Bartegi, A.; Salido, G.M.; Rosado, J.A. Cinnamtannin B-1 from bay wood reduces abnormal intracellular Ca2+ homeostasis and platelet hyperaggregability in type 2 diabetes mellitus patients. Arch. Biochem. Biophys., 2007, 457(2), 235-242.
[http://dx.doi.org/10.1016/j.abb.2006.10.020] [PMID: 17118329]
[66]
López, J.J.; Jardín, I.; Salido, G.M.; Rosado, J.A. Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life Sci., 2008, 82(19-20), 977-982.
[http://dx.doi.org/10.1016/j.lfs.2008.03.009] [PMID: 18433795]
[67]
Zhang, Y.; Shi, H.; Wang, W.; Ke, Z.; Xu, P.; Zhong, Z.; Li, X.; Wang, S. Antithrombotic effect of grape seed proanthocyanidins extract in a rat model of deep vein thrombosis. J. Vasc. Surg., 2011, 53(3), 743-753.
[http://dx.doi.org/10.1016/j.jvs.2010.09.017] [PMID: 21095090]
[68]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[69]
Wright, B.; Spencer, J.P.; Lovegrove, J.A.; Gibbins, J.M. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs. Cardiovasc. Res., 2013, 97(1), 13-22.
[http://dx.doi.org/10.1093/cvr/cvs304] [PMID: 23024269]
[70]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[71]
Bravo, L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[72]
Kozłowska, A.; Szostak-Wegierek, D. Flavonoids--food sources and health benefits. Rocz. Panstw. Zakl. Hig., 2014, 65(2), 79-85.
[PMID: 25272572]
[73]
Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 2002, 22, 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[74]
Perez-Vizcaino, F.; Duarte, J. Flavonols and cardiovascular disease. Mol. Aspects Med., 2010, 31(6), 478-494.
[http://dx.doi.org/10.1016/j.mam.2010.09.002] [PMID: 20837053]
[75]
Beretz, A.; Cazenave, J.P.; Anton, R. Inhibition of aggregation and secretion of human platelets by quercetin and other flavonoids: structure-activity relationships. Agents Actions, 1982, 12(3), 382-387.
[http://dx.doi.org/10.1007/BF01965408] [PMID: 6182778]
[76]
Landolfi, R.; Mower, R.L.; Steiner, M. Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations. Biochem. Pharmacol., 1984, 33(9), 1525-1530.
[http://dx.doi.org/10.1016/0006-2952(84)90423-4] [PMID: 6329230]
[77]
Hubbard, G.P.; Wolffram, S.; de Vos, R.; Bovy, A.; Gibbins, J.M.; Lovegrove, J.A. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study. Br. J. Nutr., 2006, 96(3), 482-488.
[PMID: 16925853]
[78]
Guerrero, J.A.; Lozano, M.L.; Castillo, J.; Benavente-García, O.; Vicente, V.; Rivera, J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J. Thromb. Haemost., 2005, 3(2), 369-376.
[http://dx.doi.org/10.1111/j.1538-7836.2004.01099.x] [PMID: 15670046]
[79]
Vaiyapuri, S.; Ali, M.S.; Moraes, L.A.; Sage, T.; Lewis, K.R.; Jones, C.I.; Gibbins, J.M. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2740-2749.
[http://dx.doi.org/10.1161/ATVBAHA.113.301988] [PMID: 24135020]
[80]
Choi, J.H.; Kim, D.W.; Park, S.E.; Lee, H.J.; Kim, K.M.; Kim, K.J.; Kim, M.K.; Kim, S.J.; Kim, S. Anti-thrombotic effect of rutin isolated from Dendropanax morbifera Leveille. J. Biosci. Bioeng., 2015, 120(2), 181-186.
[http://dx.doi.org/10.1016/j.jbiosc.2014.12.012] [PMID: 25777266]
[81]
Liang, M.L.; Da, X.W.; He, A.D.; Yao, G.Q.; Xie, W.; Liu, G.; Xiang, J.Z.; Ming, Z.Y. Pentamethylquercetin (PMQ) reduces thrombus formation by inhibiting platelet function. Sci. Rep., 2015, 5, 11142.
[http://dx.doi.org/10.1038/srep11142] [PMID: 26059557]
[82]
El Haouari, M.; Rosado, J.A. Modulation of platelet function and signaling by flavonoids. Mini Rev. Med. Chem., 2011, 11(2), 131-142.
[http://dx.doi.org/10.2174/138955711794519537] [PMID: 21222578]
[83]
Santhakumar, A.B.; Bulmer, A.C.; Singh, I. A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. J. Hum. Nutr. Diet., 2014, 27(1), 1-21.
[http://dx.doi.org/10.1111/jhn.12177] [PMID: 24205990]
[84]
Pignatelli, P.; Di Santo, S.; Buchetti, B.; Sanguigni, V.; Brunelli, A.; Violi, F. Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment. FASEB J., 2006, 20(8), 1082-1089.
[http://dx.doi.org/10.1096/fj.05-5269com] [PMID: 16770007]
[85]
Pignatelli, P.; Pulcinelli, F.M.; Celestini, A.; Lenti, L.; Ghiselli, A.; Gazzaniga, P.P.; Violi, F. The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am. J. Clin. Nutr., 2000, 72(5), 1150-1155.
[http://dx.doi.org/10.1093/ajcn/72.5.1150] [PMID: 11063442]
[86]
Wang, S.B.; Jang, J.Y.; Chae, Y.H.; Min, J.H.; Baek, J.Y.; Kim, M.; Park, Y.; Hwang, G.S.; Ryu, J.S.; Chang, T.S. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free Radic. Biol. Med., 2015, 83, 41-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.018] [PMID: 25645952]
[87]
Oh, W.J.; Endale, M.; Park, S.C.; Cho, J.Y.; Rhee, M.H. Dual roles of quercetin in platelets: phosphoinositide-3-kinase and MAP kinases inhibition, and cAMP-dependent vasodilator-stimulated phosphoprotein stimulation. Evid. Based Complement. Alternat. Med., 2012, 2012485262
[http://dx.doi.org/10.1155/2012/485262] [PMID: 23304202]
[88]
Mosawy, S.; Jackson, D.E.; Woodman, O.L.; Linden, M.D. The flavonols quercetin and 3′,4′-dihydroxyflavonol reduce platelet function and delay thrombus formation in a model of type 1 diabetes. Diab. Vasc. Dis. Res., 2014, 11(3), 174-181.
[http://dx.doi.org/10.1177/1479164114524234] [PMID: 24623318]
[89]
Fuentes, E.; Pereira, J.; Alarcón, M.; Valenzuela, C.; Pérez, P.; Astudillo, L.; Palomo, I. Protective mechanisms of S. lycopersicum aqueous fraction (nucleosides and flavonoids) on platelet activation and thrombus formation: in vitro, ex vivo and in vivo studies. Evid. Based Complement. Alternat. Med., 2013, 2013609714
[http://dx.doi.org/10.1155/2013/609714] [PMID: 24159349]
[90]
Guerrero, J.A.; Navarro-Nuñez, L.; Lozano, M.L.; Martínez, C.; Vicente, V.; Gibbins, J.M.; Rivera, J. Flavonoids inhibit the platelet TxA(2) signalling pathway and antagonize TxA(2) receptors (TP) in platelets and smooth muscle cells. Br. J. Clin. Pharmacol., 2007, 64(2), 133-144.
[http://dx.doi.org/10.1111/j.1365-2125.2007.02881.x] [PMID: 17425630]
[91]
Hubbard, G.P.; Stevens, J.M.; Cicmil, M.; Sage, T.; Jordan, P.A.; Williams, C.M.; Lovegrove, J.A.; Gibbins, J.M. Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. J. Thromb. Haemost., 2003, 1(5), 1079-1088.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00212.x] [PMID: 12871380]
[92]
Vilahur, G.; Badimon, L. Antiplatelet properties of natural products. Vascul. Pharmacol., 2013, 59(3-4), 67-75.
[http://dx.doi.org/10.1016/j.vph.2013.08.002] [PMID: 23994642]
[93]
Carnevale, R.; Loffredo, L.; Pignatelli, P.; Nocella, C.; Bartimoccia, S.; Di Santo, S.; Martino, F.; Catasca, E.; Perri, L.; Violi, F. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers. J. Thromb. Haemost., 2012, 10(1), 125-132.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04558.x] [PMID: 22066819]
[94]
Kuntić, V.; Filipović, I.; Vujić, Z. Effects of rutin and hesperidin and their Al(III) and Cu(II) complexes on in vitro plasma coagulation assays. Molecules, 2011, 16(2), 1378-1388.
[http://dx.doi.org/10.3390/molecules16021378] [PMID: 21301410]
[95]
Pearson, D.A.; Paglieroni, T.G.; Rein, D.; Wun, T.; Schramm, D.D.; Wang, J.F.; Holt, R.R.; Gosselin, R.; Schmitz, H.H.; Keen, C.L. The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function. Thromb. Res., 2002, 106(4-5), 191-197.
[http://dx.doi.org/10.1016/S0049-3848(02)00128-7] [PMID: 12297125]
[96]
Kang, W.S.; Lim, I.H.; Yuk, D.Y.; Chung, K.H.; Park, J.B.; Yoo, H.S.; Yun, Y.P. Antithrombotic activities of green tea catechins and (-)-epigallocatechin gallate. Thromb. Res., 1999, 96(3), 229-237.
[http://dx.doi.org/10.1016/S0049-3848(99)00104-8] [PMID: 10588466]
[97]
Ikemura, M.; Sasaki, Y.; Giddings, J.C.; Yamamoto, J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother. Res., 2012, 26(9), 1272-1277.
[http://dx.doi.org/10.1002/ptr.3724] [PMID: 22228501]
[98]
Murakami, A.; Nakamura, Y.; Torikai, K.; Tanaka, T.; Koshiba, T.; Koshimizu, K.; Kuwahara, S.; Takahashi, Y.; Ogawa, K.; Yano, M.; Tokuda, H.; Nishino, H.; Mimaki, Y.; Sashida, Y.; Kitanaka, S.; Ohigashi, H. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res., 2000, 60(18), 5059-5066.
[PMID: 11016629]
[99]
Lu, W.J.; Lin, K.C.; Liu, C.P.; Lin, C.Y.; Wu, H.C.; Chou, D.S.; Geraldine, P.; Huang, S.Y.; Hsieh, C.Y.; Sheu, J.R. Prevention of arterial thrombosis by nobiletin: in vitro and in vivo studies. J. Nutr. Biochem., 2016, 28, 1-8.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.024] [PMID: 26878777]
[100]
Chen, X.; Jin, J.; Chen, Y.; Peng, L.; Zhong, G.; Li, J.; Bi, H.; Cai, Y.; Huang, M. Effect of scutellarin on the metabolism and pharmacokinetics of clopidogrel in rats. Biopharm. Drug Dispos., 2015, 36(1), 64-68.
[http://dx.doi.org/10.1002/bdd.1918] [PMID: 25256597]
[101]
Wang, Z.Y.; Chen, M.; Zhu, L.L.; Yu, L.S.; Zeng, S.; Xiang, M.X.; Zhou, Q. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther. Clin. Risk Manag., 2015, 11, 449-467.
[http://dx.doi.org/10.2147/TCRM.S80437] [PMID: 25848291]
[102]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[103]
Dobrydneva, Y.; Williams, R.L.; Blackmore, P.F. Diethylstilbestrol and other nonsteroidal estrogens: novel class of store-operated calcium channel modulators. J. Cardiovasc. Pharmacol., 2010, 55(5), 522-530.
[http://dx.doi.org/10.1097/FJC.0b013e3181d64b33] [PMID: 20147843]
[104]
Mabberley, D.J. The plant book: A portable dictionary of the vascular plants; Cambridge University Press: Cambridge, 1997.
[105]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[106]
Bekendam, R.H.; Flaumenhaft, R. Inhibition of protein disulfide isomerase in thrombosis. Basic Clin. Pharmacol. Toxicol., 2016, 119(Suppl. 3), 42-48.
[http://dx.doi.org/10.1111/bcpt.12573] [PMID: 26919268]
[107]
Di Vito, C.; Bertoni, A.; Nalin, M.; Sampietro, S.; Zanfa, M.; Sinigaglia, F. The phytoestrogen 8-prenylnaringenin inhibits agonist-dependent activation of human platelets. Biochim. Biophys. Acta, 2012, 1820(11), 1724-1733.
[http://dx.doi.org/10.1016/j.bbagen.2012.06.018] [PMID: 22766195]
[108]
Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem., 2008, 56(15), 6185-6205.
[http://dx.doi.org/10.1021/jf8006568] [PMID: 18593176]
[109]
Pinasseau, L.; Vallverdú-Queralt, A.; Verbaere, A.; Roques, M.; Meudec, E.; Le Cunff, L.; Péros, J.P.; Ageorges, A.; Sommerer, N.; Boulet, J.C.; Terrier, N.; Cheynier, V. Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front. Plant Sci., 2017, 8, 1826.
[http://dx.doi.org/10.3389/fpls.2017.01826] [PMID: 29163566]
[110]
Rull, G.; Mohd-Zain, Z.N.; Shiel, J.; Lundberg, M.H.; Collier, D.J.; Johnston, A.; Warner, T.D.; Corder, R. Effects of high flavanol dark chocolate on cardiovascular function and platelet aggregation. Vascul. Pharmacol., 2015, 71, 70-78.
[http://dx.doi.org/10.1016/j.vph.2015.02.010] [PMID: 25869509]
[111]
Okuda-Tanino, A.; Sugawara, D.; Tashiro, T.; Iwashita, M.; Obara, Y.; Moriya, T.; Tsushima, C.; Saigusa, D.; Tomioka, Y.; Ishii, K.; Nakahata, N. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity. PLoS One, 2017, 12(3) e0173628
[http://dx.doi.org/10.1371/journal.pone.0173628] [PMID: 28282426]
[112]
Lee, J.H.; Kim, M.; Chang, K.H.; Hong, C.Y.; Na, C.S.; Dong, M.S.; Lee, D.; Lee, M.Y. Antiplatelet effects of Rhus verniciflua stokes heartwood and its active constituents--fisetin, butein, and sulfuretin--in rats. J. Med. Food, 2015, 18(1), 21-30.
[http://dx.doi.org/10.1089/jmf.2013.3116] [PMID: 25372471]
[113]
Alajmi, M.F.; Al-Hadiya, B.M.; El Tahir, K.E. Pharmacological studies on Myrica rubra Sieb et zucc. Effects on the cardiovascular system and platelets. Drug Res. (Stuttg.), 2013, 63(9), 439-444.
[http://dx.doi.org/10.1055/s-0033-1348246] [PMID: 23804250]
[114]
Zhou, F.H.; Deng, X.J.; Chen, Y.Q.; Ya, F.L.; Zhang, X.D.; Song, F.; Li, D.; Yang, Y. Anthocyanin cyanidin-3-glucoside attenuates platelet granule release in mice fed high-fat diets. J. Nutr. Sci. Vitaminol. (Tokyo), 2017, 63(4), 237-243.
[http://dx.doi.org/10.3177/jnsv.63.237] [PMID: 28978870]
[115]
Yao, Y.; Chen, Y.; Adili, R.; McKeown, T.; Chen, P.; Zhu, G.; Li, D.; Ling, W.; Ni, H.; Yang, Y. Plant-based food cyanidin-3-glucoside modulates human platelet glycoprotein vi signaling and inhibits platelet activation and thrombus formation. J. Nutr., 2017, 147(10), 1917-1925.
[http://dx.doi.org/10.3945/jn.116.245944] [PMID: 28855423]
[116]
Song, F.; Zhu, Y.; Shi, Z.; Tian, J.; Deng, X.; Ren, J.; Andrews, M.C.; Ni, H.; Ling, W.; Yang, Y. Plant food anthocyanins inhibit platelet granule secretion in hypercholesterolaemia: Involving the signalling pathway of PI3K-Akt. Thromb. Haemost., 2014, 112(5), 981-991.
[http://dx.doi.org/10.1160/th13-12-1002] [PMID: 25077916]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy