[1]
Zhang, Q.; Li, Y.; Yang, Q.; Chen, H.; Chen, X.; Jiao, T.; Peng, Q. Distinguished Cr (VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. J. Hazard. Mater., 2017, 342, 732-740.
[2]
Zhao, X.; Ma, K.; Jiao, T.; Xing, R.; Ma, X.; Hu, J.; Huang, H.; Zhang, L.; Yan, X. Fabrication of hierarchical layer-by-layer assembled diamond-based core-shell nanocomposites as highly efficient dye absorbents for wastewater treatment. Sci. Rep., 2017, 7, 44076.
[3]
Long, X.; Li, G.; Wang, Z.; Zhu, H.; Zhang, T.; Xiao, S.; Guo, W.; Yang, S. Metallic iron–nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc., 2015, 137, 11900-11903.
[4]
Chen, Z.; Ma, Z.; Song, J.; Wang, L.; Shao, G. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution. J. Power Sources, 2016, 324, 86-96.
[5]
Yang, W.; Yang, W.; Song, A.; Gao, L.; Sun, G.; Shao, G. Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J. Power Sources, 2017, 348, 175-182.
[6]
Lu, J.M.; Zheliuk, O.; Leermakers, I.; Yuan, N.F.; Zeitler, U.; Law, K.T.; Ye, J.T. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science, 2015, 350, 1353-1357.
[7]
Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortière, A.; Daffos, B.; Taberna, P.L. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science, 2016, 351, 691-695.
[8]
Du, Q.; Su, L.; Hou, L.; Sun, G.; Feng, M.; Yin, X.; Ma, Z.; Shao, G.; Gao, W. Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor. J. Alloys Compd., 2018, 740, 1051-1059.
[9]
Miller, Jr, W.R.; Rhoderick, G.C.; Guenther, F.R. Investigating adsorption/desorption of carbon dioxide in aluminum compressed gas cylinders. Anal. Chem., 2015, 87, 1957-1962.
[10]
Song, A.; Yang, W.; Yang, W.; Sun, G.; Yin, X.; Gao, L.; Wang, Y.; Qin, X.; Shao, G. Facile synthesis of cobalt nanoparticles entirely encapsulated in slim nitrogen-doped carbon nanotubes as oxygen reduction catalyst. ACS Sustain. Chem.& Eng., 2017, 5(5), 3973-3981.
[11]
Yin, X.; Sun, G.; Wang, L.; Bai, L.; Su, L.; Wang, Y.; Du, Q.; Shao, G. 3D hierarchical network NiCo2S4 nanoflakes grown on Ni foam as efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reaction in alkaline solution. Int. J. Hydrogen Energy, 2017, 42(40), 25267-25276.
[12]
Lv, H.; Xi, Z.; Chen, Z.; Guo, S.; Yu, Y.; Zhu, W.; Li, Q.; Zhang, X.; Pan, M.; Lu, G. C and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc., 2015, 137, 5859-5862.
[13]
Zhou, W.; Wu, X.J.; Cao, X.; Huang, X.; Tan, C.; Tian, J.; Liu, H.; Wang, J.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci., 2013, 6, 2921-2924.
[14]
Wang, M.; Wang, Z.; Yu, X.; Guo, Z. Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2015, 40, 2173-2181.
[15]
Tasic, G.S.; Maslovara, S.P.; Zugic, D.L.; Maksic, A.D.; Kaninski, M.P.M. Characterization of the Ni–Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis. Int. J. Hydrogen Energy, 2011, 36, 11588-11595.
[16]
González-Buch, C.; Herraiz-Cardona, I.; Ortega, E.; García-Antón, J.; Pérez-Herranz, V. Synthesis and characterization of macroporous Ni, Co and Ni–Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. Int. J. Hydrogen Energy, 2013, 38, 10157-10169.
[17]
Lupi, C.; Dell’Era, A.; Pasquali, M. Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int. J. Hydrogen Energy, 2009, 34, 2101-2106.
[18]
Oliver-Tolentino, M.A.; Arce-Estrada, E.M.; Cortés-Escobedo, C.A.; Bolarín-Miro, A.M.; Jesús, S.D.; González-Huerta, R.D.G.; Manzo-Robledo, A. Electrochemical behavior of NixW1−x materials as catalyst for hydrogen evolution reaction in alkaline media. J. Alloys Compd., 2012, 536, S245-S249.
[19]
Wang, M.; Wang, Z.; Guo, Z.; Li, Z. The enhanced electrocatalytic activity and stability of NiW films electrodeposited under super gravity field for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2011, 36, 3305-3312.
[20]
Han, Q.; Liu, K.; Chen, J.; Wei, X. A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes. Int. J. Hydrogen Energy, 2003, 28, 1207-1212.
[21]
Cao, Y.; Liu, J.; Wang, F.; Ji, J.; Wang, J.; Qin, S.; Zhang, L. Electrodeposited Ni–S intermetallic compound film electrodes for hydrogen evolution reaction in alkaline solutions. Mater. Lett., 2010, 64, 261-263.
[22]
Corte, D.A.D.; Torres, C.; Correa, P.D.S.; Rieder, E.S.; Malfatti, C.D.F. The hydrogen evolution reaction on nickel-polyaniline composite electrodes. Int. J. Hydrogen Energy, 2012, 37, 3025-3032.
[23]
Krstajić, N.V.; Lačnjevac, U.; Jović, B.M.; Mora, S.; Jović, V.D. Non-noble metal composite cathodes for hydrogen evolution. Part II: the Ni–MoO2 coatings electrodeposited from nickel chloride–ammonium chloride bath containing MoO2 powder particles. Int. J. Hydrogen Energy, 2011, 36, 6450-6461.
[24]
Li, Y.; Wang, L.; Song, A.; Xia, M.; Li, Z.; Shao, G. The study on the active origin of electrocatalytic water splitting using Ni-MoS2 as example. Electrochim. Acta, 2018, 268, 268-275.
[25]
Herraiz-Cardona, I.; Ortega, E.; Vázquez-Gómez, L.; Pérez-Herranz, V. Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. Int. J. Hydrogen Energy, 2011, 36, 11578-11587.
[26]
Jiménez-Marín, E.; Villalpando, I.; Trejo-Valdez, M.; Cervantes-Sodi, F.; Vargas-García, J.R.; Torres-Torres, C. Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes. Mater. Sci. Eng. B, 2017, 220, 22-29.
[27]
Jia, X.; Zhao, Y.; Chen, G.; Shang, L.; Shi, R.; Kang, X.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; Zhang, T. Ni3FeN nanoparticles derived from ultrathin NiFe‐layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater., 2016, 6(10), 1502585.
[28]
Cai, W.; Liu, W.; Han, J.; Wang, A. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode. Biosens. Bioelectron., 2016, 80, 118-122.
[29]
Wang, L.; Li, Y.; Xia, M.; Li, Z.; Chen, Z.; Ma, Z.; Qin, X.; Shao, G. Ni nanoparticles supported on graphene layers: An excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J. Power Sources, 2017, 347, 220-228.
[30]
Song, A.; Cao, L.; Yang, W.; Li, Y.; Qin, X.; Shao, G. Uniform multilayer graphene-coated iron and iron-carbide as oxygen reduction catalyst. ACS Sustain. Chem.& Eng., 2018, 6(4), 4890-4898.
[31]
Du, J.; Shao, G.; Qin, X.; Wang, G.; Zhang, Y.; Ma, Z. High specific surface area MnO2 electrodeposited under supergravity field for supercapacitors and its electrochemical properties. Mater. Lett., 2012, 84, 13-15.
[32]
Liu, T.; Shao, G.; Ji, M. Electrodeposition of Ni(OH)2/Ni/graphene composites under supergravity field for supercapacitor application. Mater. Lett., 2014, 122, 273-276.
[33]
Mckone, J.R.; Sadtler, B.F.; Werlang, C.A.; Lewis, N.S.; Gray, H.B. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal., 2013, 3, 166-169.
[34]
Xing, R.; Jiao, T.; Liu, Y.; Ma, K.; Zou, Q.; Ma, G.; Yan, X. Co-assembly of graphene oxide and albumin/photosensitizer nanohybrids towards enhanced photodynamic therapy. Polymers, 2016, 8, 181.
[35]
Zhang, J.; Liu, H.; Shi, P.; Li, Y.; Huang, L.; Mai, W.; Tan, S.; Cai, X. Growth of nickel (111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite. J. Power Sources, 2014, 267, 356-365.
[36]
Zhen, W.; Ma, J.; Lu, G. Small-sized Ni (111) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation. Appl. Catal. B Environ., 2016, 190, 12-25.
[37]
Huang, Y.G.; Fan, H.L.; Chen, Z.K.; Gu, C.B.; Sun, M.X.; Wang, H.Q.; Li, Q.Y. The effect of graphene for the hydrogen evolution reaction in alkaline medium. Int. J. Hydrogen Energy, 2016, 41, 3786-3793.
[38]
Armstrong, R.D.; Henderson, M. Impedance plane display of a reaction with an adsorbed intermediate. J. Electroanal. Chem., 1972, 39, 81-90.
[39]
Zhiani, M.; Kamali, S. The recent development of efficient earth-abundant transition-metal nanocatalysts. Electrocatalysis, 2016, 7, 1-11.
[40]
Mahale, N.K.; Ingle, S.T. Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode. Energy, 2017, 119, 872-878.
[41]
Ge, J.M.; Zhang, B.; Lv, L.B.; Wang, H.H.; Ye, T.N.; Wei, X.; Su, J.; Wang, K.X.; Li, X.H.; Chen, J.S. Constructing holey graphene monoliths via supramolecular assembly: Enriching nitrogen heteroatoms up to the theoretical limit for hydrogen evolution reaction. Nano Energy, 2015, 15, 567-575.