[1]
Panetta K, Bao L, Agaian S. Sequence-to-sequence similarity-based filter for image denoising. IEEE Sens J 2016; 16(11): 4380-8.
[2]
Chang QH, Yang T. A lattice Boltzmann method for image denoising. IEEE Trans Image Process 2009; 18(12): 2797-802.
[3]
Rafati M, Arabfard M, Zadeh MRR, Maghsoudloo M. Assessment of noise reduction in ultrasound images of common carotid and brachial arteries. IET Comput Vis 2016; 10: 1-8.
[4]
Osher S, Shu CW. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J Numer Anal 1991; 28(4): 907-22.
[5]
Huang D-A, Kang L-W, Wang Y-C F, Lin C-W. Self-learning based image decomposition with applications to single image denoising IEEE T Multimedia 2014: 16(1): 83-93.
[6]
Chen B, Li Y, Cai J-L. Noisy image segmentation based on nonlinear diffusion equation model. Appl Math Model 2012; 36(3): 1197-208.
[7]
Gabriela G, Batard T, Bertalmío M, Levine S. A decomposition framework for image denoising algorithms. IEEE Trans Image Process 2016; 25(1): 388-99.
[8]
Hu S, Liao Z, Sun D, Chen W. A numerical method for preserving curve edges in nonlinear anisotropic smoothing. Math Probl Eng 2011; 2011: 1-14.
[9]
Babacan SD, Molina R, Katsaggelos A. Variational bayesian blind deconvolution using a total variation prior. IEEE Trans Image Process 2009; 18(1): 12-26.
[10]
Talebi H, Milanfar P. Global image denoising. IEEE Trans Image Process 2014; 23(2): 755-68.
[11]
Wang S, Huang T-Z, Zhao X-L, Mei JJ, Huang J. Speckle noise removal in ultrasound images by first- and second-order total variation. Numer Algor 2017; 78(2): 513-33.
[12]
Hacini M, Hachouf F, Djemal K. A new speckle filtering method for ultrasound images based on a weighted multiplicative total variation. Signal Processing 2014; 103: 214-29.
[13]
Koundal D, Gupta S, Singh S. Nakagami-based total variation method for speckle reduction in thyroid ultrasound images. Proc Inst Mech Eng H 2015; 230(2): 97-110.
[14]
Huang J, Yang X. Fast reduction of speckle noise in real ultrasound images. Signal Processing 2013; 93: 684-94.
[15]
Li F, MK Ng, Shen C. Multiplicative noise removal with spatially varying regularization parameters. SIAM J Imaging Sci 2010; 3: 1-20.
[16]
Gastounioti A, Makrodimitris S, Golemati S, et al. A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall. IEEE J Biomed Health Inform 2015; 19(3): 1137-45.
[17]
Molinari F, Zeng G, Suri JS. Intima-media thickness: Setting a standard for a completely automated method of ultrasound measurement. IEEE Trans Ultrason Ferroelectr Freq Control 57(5): 1112-24.
[18]
Petroudi S, Loizou C, Pantziaris M, Pattichis C. Segmentation of the common carotid intima-media complex in ultrasound images using active contours. IEEE Trans Biomed Eng 2012; 59(11): 3060-9.
[19]
Vegas-Sanchez-Ferrero G, Seabra J, Rodriguez-Leor O, et al. Gamma mixture classifier for plaque detection in intravascular ultrasonic images. IEEE Trans Ultrason Ferroelectr Freq Control 2014; 61(1): 44-61.
[20]
Loizou CP, Pantziaris M, Pattichis MS, Kyriacou E, Pattichis CS. Ultrasound image texture analysis of the intima and media layers of the common carotid artery and its correlation with age and gender. Comput Med Imaging Graph 2009; 33: 317-24.
[21]
Gao Z, Li Y, Sun Y, Yang J, et al. Motion tracking of the carotid artery wall from ultrasound image sequences: A nonlinear state-space approach. IEEE Trans Med Imaging 2018; 37(1): 273-83.
[22]
Gao Z, Xiong H, Liu X, et al. Robust estimation of carotid artery wall motion using the elasticity-based state-space approach. Med Image Anal 2017; 37: 1-21.
[23]
Kang J, Lee JY, Yoo Y. A new feature- enhanced speckle reduction method based on multiscale analysis for ultrasound b-mode imaging. IEEE Trans Biomed Eng 2016; 63(6): 1178-91.
[24]
Jirik R, Taxt T. High-resolution ultrasonic imaging using fast two-dimensional homomorphic filtering. IEEE Trans Ultrason Ferroelectr Freq Control 2006; 53(8): 1440-8.
[25]
Bioucas-Dias JM, Figueiredo MAT. Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans Image Process 2010; 19(7): 1720-30.
[26]
Rajalakshmi T, Prince S. Retinal model-based visual perception. Applied for medical image processing. Biol Inspir Cogn Arc 2016; 18: 95-104.
[27]
Vimalraj C, Esakkirajan S, Kumar TV, Sreevidya P. Direction sensitive wavelet packet for despeckling of ultrasound images. IET Comput Vis 2016; 10(7): 746-57.
[28]
Zhan Y, Ding M, Wu L, Zhang X. Nonlocal means method using weight refining for despeckling of ultrasound images. Signal Processing 2014; 103: 201-13.
[29]
Afsham N, Rasoulian A, Najafi M, Abolmaesumi P, Rohling R. Nonlocal means filter-based speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control 2015; 62(8): 1501-15.
[30]
Djurovic I. BM3D filter in salt-and-pepper noise removal. EURASIP J Image Vid 2016; 2016: 13.
[31]
Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational image deblurring. IEEE Trans Image Process 2012; 21(4): 1-13.
[32]
Liu H, Yan F, Zhu J, Fang F. Adaptive vectorial total variation models for multi-channel synthetic aperture radar images despeckling with fast algorithms. IET Image Process 2013; 7(9): 795-804.