[1]
J.G. Li, T. Ishigaki, and X.D. Sun, "Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties", J. Phys. Chem. C. vol. 111, pp. 4969-4976, March 2007.
[2]
R.C. Bhave, and B.I. Lee, "Experimental variables in the synthesis of brookite phase TiO2 nanoparticles", Mater. Sci. Eng. A. vol. 467, pp. 146-149, October 2007.
[3]
G.K. Zhang, X.M. Ding, F.S. He, X.Y. Yu, J. Zhou, Y.J. Hu, and J.W. Xie, "Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite", Langmuir. vol. 24, pp. 1026- 1030, February 2008.
[4]
K.C. Zhang, J.X. Shen, Y.F. Zhang, J.Y. Zhang, C.B. Wei, and X.W. Ma, "Controlled-fabrication, morphology formation mechanism of TiO2-B nanobelts with NiO-doping", Mater. Des.. vol. 88, pp. 713-719, December 2015.
[5]
X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, and Z.Y. Fan, "Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts", ACS Appl. Mater. Interfaces. vol. 4, pp. 3944-3950, August 2012.
[6]
J.A. Mendoza, D.H. Lee, and J.H. Kang, "Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: Effect of surface modification", Chemosphere. vol. 182, pp. 539-546, September 2017.
[7]
W.W. Liu, H.Y. Zhang, H.G. Wang, M. Zhang, and M. Guo, "Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells", Appl. Surf. Sci.. vol. 422, pp. 304-315, November 2017.
[8]
H.H. Gan, G.K. Zhang, and Y.D. Guo, "Facile in situ synthesis of the bismuth oxychloride/bismuth niobate/TiO2 composite as a high efficient and stable visible light driven photocatalyst", J. Colloid Interface Sci.. vol. 386, pp. 373-380, November 2012.
[9]
Y. Zhou, H. Y. Wang, Q. Zhang, Y. H. Lin, Z. Zhang, Y. P. Wu, and Z. Y. Zhao, Method for preparing bismuth oxycarbonate nano-tablet at normal temperature. CN 102942219A, February 27, 2013.
[10]
Q. F. Han, L. L. Yang, J. Zhao, X. Wang, J. W. Zhu, X. D. Wu, F. L. Bei, and X. H. Liu, Bi2O2CO3 nanocrystal with unique morphology, and preparation method thereof. CN 105523584A, April 27, 2016.
[11]
Y.Y. Liu, Z.Y. Wang, B.B. Huang, K.S. Yang, X.Y. Zhang, X.Y. Qin, and Y. Dai, "Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet", Appl. Surf. Sci.. vol. 257, pp. 172-175, October 2010.
[12]
Y. Zheng, F. Duan, M.Q. Chen, and Y. Xie, "Synthetic Bi2O2CO3 nanostructures: Novel photocatalyst with controlled special surface exposed", J. Mol. Catal. Chem.. vol. 317, pp. 34-40, February 2010.
[13]
T.Y. Zhao, J.T. Zai, M. Xu, Q. Zou, Y.Z. Su, K.X. Wang, and X.F. Qian, "Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity", CrystEngComm. vol. 13, pp. 4010-4017, April 2011.
[14]
F. Dong, A.M. Zheng, Y.J. Sun, M. Fu, B.Q. Jiang, W.K. Ho, S.C. Lee, and Z.B. Wu, "One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)2CO3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets", CrystEngComm. vol. 14, pp. 3534-3544, February 2012.
[15]
P. Innocenzi, L. Malfatti, and G.J.A.A. Soler-Illia, "Hierarchical Mesoporous Films: From Self-Assembly to Porosity with Different Length Scales", Chem. Mater.. vol. 23, pp. 2501-2509, May 2011.
[16]
Z. F. Zhou, H. J. Chen, S. Y. Shao, and Q. L. Wang, Cobalt oxide doped basic bismuth carbonate/bismuth oxychloride photocatalyst and preparation method thereof. CN 106824213A, June 13, 2017.
[17]
Q.Y. Li, H.T. Liu, F. Dong, and M. Fu, "Hydrothermal formation of N-doped (BiO)2CO3, honeycomb-like microspheres photocatalysts with bismuth citrate and dicyandiamide as precursors", J. Colloid Interface Sci.. vol. 408, pp. 33-42, October 2013.
[18]
Y. Zhou, Z.Y. Zhao, F. Wang, K. Cao, D.E. Doronkin, F. Dong, and J.D. Grunwaldt, "Facile synthesis of surface N-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies", J. Hazard. Mater.. vol. 307, pp. 163-172, April 2016.
[19]
H.W. Huang, X.W. Li, J.J. Wang, F. Dong, P.K. Chu, T.R. Zhang, and Y.H. Zhang, "Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32- doped Bi2O2CO3", ACS Catal.. vol. 5, pp. 4094-4103, July 2015.
[20]
X.W. Huang, and H.F. Chen, "One-pot hydrothermal synthesis of Bi2O2CO3/Bi2WO6 visible light photocatalyst with enhanced photocatalytic activity", Appl. Surf. Sci.. vol. 284, pp. 843-848, November 2013.
[21]
Y.S. Xu, and W.D. Zhang, "Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity", Appl. Catal. BEnviron.. vol. 140, pp. 306-316, August-September 2013.
[22]
H.H. Gan, G.K. Zhang, and H.X. Huang, "Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites", J. Hazard. Mater.. vol. 250, pp. 131-137, April 2013.
[23]
W.J. Wang, H.F. Cheng, B.B. Huang, X.J. Lin, X.Y. Qin, X.Y. Zhang, and Y. Dai, "Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants", J. Colloid Interface Sci.. vol. 402, pp. 34–39, July 2013
[24]
R.P. Hu, X. Xiao, S.H. Tu, X. Zuo, and J.M. Nan, "Synthesis of flower-like heterostructured Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol", Appl. Catal. BEnviron.. vol. 163, pp. 510-519, February 2015.
[25]
L. Jin, G.Q. Zhu, M. Hojamberdiev, X.C. Luo, C.W. Tan, J.H. Peng, X.M. Wei, J.P. Li, and P. Liu, "A plasmonic Ag–AgBr/Bi2O2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity", Ind. Eng. Chem. Res.. vol. 53, pp. 13718-13727, September 2014.
[26]
N. Liang, M. Wang, L. Jin, S.S. Huang, W.L. Chen, M. Xu, Q.Q. He, J.T. Zai, N.H. Fang, and X.F. Qian, "Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity", ACS Appl. Mater. Interfaces. vol. 6, pp. 11698-11705, July 2014.
[27]
T.T. Li, X.L. Hu, C.C. Liu, C.M. Tang, X.K. Wang, and S.L. Luo, "“Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation”, J Mol", Catal. A. vol. 425, pp. 124-135, December 2016.
[28]
L.L. Zhang, C. Hu, and H.H. Ji, "p-AgI anchored on 001 facets of n-Bi2O2CO3 sheets with enhanced photocatalytic activity and stability", Appl. Catal. B-Environ.. vol. 205, pp. 34-41, May 2017.
[29]
Y.C. Huang, W.J. Fan, B.L. Li, F.Y. Zhao, Z.L. Liu, Y.X. Tong, and H.B. Ji, "Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions", Appl. Catal. BEnviron.. vol. 185, pp. 68-76, May 2016.
[30]
L.H. Yu, X.Y. Zhang, G.W. Li, Y.T. Cao, Y. Shao, and D.Z. Li, "Highly efficient Bi2O2CO3/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light", Appl. Catal. B-Environ.. ol. 187, pp. 301-309, July 2016.
[31]
L. Chen, S.F. Yin, S.L. Luo, R. Huang, Q. Zhang, T. Hong, and P.C.T. Au, "Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater", Ind. Eng. Chem. Res.. vol. 51, pp. 6760-6768, May 2012.
[32]
J. Ding, Z. Dai, F. Qin, H.P. Zhao, S. Zhao, and R. Chen, "Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics", Appl. Catal. B-Environ.. vol. 205, pp. 281-291, May 2017.
[33]
X.T. Xu, F. Wang, Y.X. Ge, H.Y. Su, B. Li, M.G. Fan, and F.Y. Zhang, Preparation method of Bi2O2CO3/Bi3.84W0.16O6.24 through solvothermal method and application of preparation method. CN Patent 105032457 A, November 11, 2015.
[34]
F. Duan, Z. G. Ding, J. Wang, Q. J. Zhao, D. J. Shi, and M. Q. Chen, BiOCOOH-Bi2O2CO3 compound photocatalyst and preparation method thereof. CN Patent 106423286A, February 22, 2017.
[35]
S.L. Lin, W.Q. Cui, X.G. Li, H. Sui, and Z.S. Zhang, "Cu2O NPs/Bi2O2CO3 flower-like complex photocatalysts with enhanced visible light photocatalytic degradation of organic pollutants", Catal. Today. vol. 297, pp. 237-245, November 2017.
[36]
J. G. Zhou, M. M. Wei, L. Li, S. Fu, L. L. Liu, S. N. You, and F. Y. Zhao, Method used for synthesis of ball flower shaped Bi2O2CO3/BiPO4 heterojunction photocatalysis material via in-suit conversion. ” CN Patent 107185569A, September 22, 2017.
[37]
W. Zhao, Y. Wang, A. J. Wang, S. P. Dou, L. C. Wu, and Q. Wang, Bi2O2CO3/PPy/g-C3N4 compound photocatalyst and preparation method and application thereof. CN Patent 106984360A, July 28, 2017.
[38]
X. Zhang, S.J. Li, and S.W. Hu, "J. L. Chen W. Jiang,J. L. Zhang, L. L. Ji,L. Cai,Y. N. Wang, W. D. Song, and J. S. Liu, “Flower-like MWCNTs/Bi2O2CO3 composites with enhanced photocatalytic activity under simulated solar light irradiation", Mater. Lett.. vol. 185, pp. 50-53, December 2016.
[39]
Y.L. Zhang, D.Y. Li, Y.G. Zhang, X.F. Zhou, S.J. Guo, and L.B. Yang, "Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process", J. Mater. Chem. A.. vol. 2, pp. 8273-8280, February 2014.
[40]
Z.Y. Wang, Y. Huang, W.K. Ho, J.J. Cao, Z.X. Shen, and S.C. Lee, "Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study", Appl. Catal. BEnviron.. vol. 199, pp. 123-133, December 2016.
[41]
Y. Liu, S. Yu, Z.Y. Zhao, F. Dong, X.A. Dong, and Y. Zhou, "N-doped Bi2O2CO3/graphene quantum dot composite photocatalyst: enhanced visible-light photocatalytic NO oxidation and in situ drifts studies", J. Phys. Chem. C. vol. 121, pp. 12168-12177, June 2017.