Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Bacteriophage-Based Biosensor for Detection of E. coli Bacteria on Graphene Modified Carbon Paste Electrode

Author(s): Amir H. Keihan, Ghader Hosseinzadeh, Sharareh Sajjadi, Danial Ashiani, Fariba Dashtestani and Khadijeh Eskandari*

Volume 9, Issue 3, 2019

Page: [408 - 413] Pages: 6

DOI: 10.2174/2210681208666180402110651

Price: $65

Abstract

Background: Escherichia coli (E. coli) bacteria is one of the hazardous human pathogens. Consequently, developing the rapid and effective method for identification and quantization of E. coli is popular in biotechnological researches in recent years.

Experimental: In this research, a label-free capacitance E. coli biosensor was fabricated based on immobilizing bacteriophage on the carbon paste electrode (Cp). Reduced graphene (RGr) was synthesized and used as a substrate for immobilization of bacteriophage on the Cp surface. E. coli bacteriophage was trapped in graphene modified carbon paste electrodes. The immobilization accuracy was confirmed via electrochemical techniques. The modified electrodes were applied as indicator electrodes for capacitance measurements of E. coli.

Results: Through this method, E. coli was detected in a concentration range of 33×10-3 to 330×10-3 N L-1 (number of E. coli per Liter) with a correlation coefficient of 0.99 and a detection limit of 12×10-3 N L-1.

Conclusion: The proposed biosensor has a fast response time of about 5 s and good selectivity over other bacteria.

Keywords: E. coli bacteria, bacteriophage, electrode, biosensor, cell culture, microorganisms.

Graphical Abstract

[1]
Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectr., 1999, 14(7), 599-624.
[2]
Tietjen, M.; Fung, D.Y. Salmonellae and food safety. Crit. Rev. Microbiol., 1995, 21(1), 53-83.
[3]
Güner, A.; Çevik, E.; Şenel, M.; Alpsoy, L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem., 2017, 229, 358-365.
[4]
Yang, G-J.; Huang, J-L.; Meng, W-J.; Shen, M.; Jiao, X-A. A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal. Chim. Acta, 2009, 647(2), 159-166.
[5]
Wang, J.; Rivas, G.; Cai, X. Screen‐printed electrochemical hybridization biosensor for the detection of DNA sequences from the Escherichia coli pathogen. Electroanalysis, 1997, 9(5), 395-398.
[6]
Hao, N.; Zhang, X.; Zhou, Z.; Hua, R.; Zhang, Y.; Liu, Q.; Qian, J.; Li, H.; Wang, K. AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosens. Bioelectr., 2017, 97, 377-383.
[7]
Xiao, C.; Jiang, F.; Zhou, B.; Li, R.; Liu, Y. Immobilization of Escherichia coli for detection of phage T4 using surface plasmon resonance. Sci. China Chem., 2012, 55(9), 1931-1939.
[8]
Benvidi, A.; Rajabzadeh, N.; Mazloum-Ardakani, M.; Heidari, M.M.; Mulchandani, A. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide. Biosens. Bioelectr., 2014, 58, 145-152.
[9]
Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem., 2014, 87(1), 230-249.
[10]
Faghihi, A.; Vakili, M.; Hosseinzadeh, G.; Farhadian, M.; Jafari, Z. Synthesis and application of recyclable magnetic freeze-dried graphene oxide nanocomposite as a high capacity adsorbent for cationic dye adsorption. Desalinat Water Treat., 2016, 57(47), 22655-22670.
[11]
Farhadian, M.; Sangpour, P.; Hosseinzadeh, G. Preparation and photocatalytic activity of WO 3–MWCNT nanocomposite for degradation of naphthalene under visible light irradiation. RSC Adv, 2016, 6(45), 39063-39073.
[12]
Keihan, A.H.; Hosseinzadeh, R.; Farhadian, M.; Kooshki, H.; Hosseinzadeh, G. Solvothermal preparation of Ag nanoparticle and graphene co-loaded TiO2 for the photocatalytic degradation of paraoxon pesticide under visible light irradiation. RSC Adv, 2016, 6(87), 83673-83687.
[13]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[14]
Yang, W.; Ratinac, K.R.; Ringer, S.P.; Thordarson, P.; Gooding, J.J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed., 2010, 49(12), 2114-2138.
[15]
Muniandy, S.; Dinshaw, I.J.; Teh, S.J.; Lai, C.W.; Ibrahim, F.; Thong, K.L.; Leo, B.F. Graphene-based label-free electrochemical aptasensor for rapid and sensitive detection of foodborne pathogen. Anal. Bioanal. Chem., 2017, 409(29), 6893-6905.
[16]
Zhang, R.; Chen, W. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens. Bioelectron., 2017, 89, 249-268.
[17]
Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron., 2017, 89, 152-166.
[18]
Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater., 2009, 19(17), 2782-2789.
[19]
Ting, S.W.; Periasamy, A.P.; Chen, S-M.; Saraswathi, R. Direct electrochemistry of catalase immobilized at electrochemically reduced graphene oxide modified electrode for amperometric H2O2 biosensor. Int. J. Electrochem. Sci., 2011, 6, 4438-4453.
[20]
Dashtestani, F.; Ghourchian, H.; Eskandari, K.; Rafiee-Pour, H-A. A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim. Acta, 2015, 182(5-6), 1045-1053.
[21]
Alipour, E.; Ghourchian, H.; Boutorabi, S.M. Gold nanoparticle based capacitive immunosensor for detection of hepatitis B surface antigen. Anal. Methods, 2013, 5(17), 4448-4453.
[22]
Committee, A.M. Recommendations for the definition, estimation and use of the detection limit. Analyst, 1987, 112(2), 199-204.
[23]
Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol., 2003, 32(1), 3-13.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy