[1]
Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectr., 1999, 14(7), 599-624.
[2]
Tietjen, M.; Fung, D.Y. Salmonellae and food safety. Crit. Rev. Microbiol., 1995, 21(1), 53-83.
[3]
Güner, A.; Çevik, E.; Şenel, M.; Alpsoy, L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem., 2017, 229, 358-365.
[4]
Yang, G-J.; Huang, J-L.; Meng, W-J.; Shen, M.; Jiao, X-A. A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal. Chim. Acta, 2009, 647(2), 159-166.
[5]
Wang, J.; Rivas, G.; Cai, X. Screen‐printed electrochemical hybridization biosensor for the detection of DNA sequences from the Escherichia coli pathogen. Electroanalysis, 1997, 9(5), 395-398.
[6]
Hao, N.; Zhang, X.; Zhou, Z.; Hua, R.; Zhang, Y.; Liu, Q.; Qian, J.; Li, H.; Wang, K. AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosens. Bioelectr., 2017, 97, 377-383.
[7]
Xiao, C.; Jiang, F.; Zhou, B.; Li, R.; Liu, Y. Immobilization of Escherichia coli for detection of phage T4 using surface plasmon resonance. Sci. China Chem., 2012, 55(9), 1931-1939.
[8]
Benvidi, A.; Rajabzadeh, N.; Mazloum-Ardakani, M.; Heidari, M.M.; Mulchandani, A. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide. Biosens. Bioelectr., 2014, 58, 145-152.
[9]
Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem., 2014, 87(1), 230-249.
[10]
Faghihi, A.; Vakili, M.; Hosseinzadeh, G.; Farhadian, M.; Jafari, Z. Synthesis and application of recyclable magnetic freeze-dried graphene oxide nanocomposite as a high capacity adsorbent for cationic dye adsorption. Desalinat Water Treat., 2016, 57(47), 22655-22670.
[11]
Farhadian, M.; Sangpour, P.; Hosseinzadeh, G. Preparation and photocatalytic activity of WO 3–MWCNT nanocomposite for degradation of naphthalene under visible light irradiation. RSC Adv, 2016, 6(45), 39063-39073.
[12]
Keihan, A.H.; Hosseinzadeh, R.; Farhadian, M.; Kooshki, H.; Hosseinzadeh, G. Solvothermal preparation of Ag nanoparticle and graphene co-loaded TiO2 for the photocatalytic degradation of paraoxon pesticide under visible light irradiation. RSC Adv, 2016, 6(87), 83673-83687.
[13]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[14]
Yang, W.; Ratinac, K.R.; Ringer, S.P.; Thordarson, P.; Gooding, J.J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed., 2010, 49(12), 2114-2138.
[15]
Muniandy, S.; Dinshaw, I.J.; Teh, S.J.; Lai, C.W.; Ibrahim, F.; Thong, K.L.; Leo, B.F. Graphene-based label-free electrochemical aptasensor for rapid and sensitive detection of foodborne pathogen. Anal. Bioanal. Chem., 2017, 409(29), 6893-6905.
[16]
Zhang, R.; Chen, W. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens. Bioelectron., 2017, 89, 249-268.
[17]
Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron., 2017, 89, 152-166.
[18]
Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater., 2009, 19(17), 2782-2789.
[19]
Ting, S.W.; Periasamy, A.P.; Chen, S-M.; Saraswathi, R. Direct electrochemistry of catalase immobilized at electrochemically reduced graphene oxide modified electrode for amperometric H2O2 biosensor. Int. J. Electrochem. Sci., 2011, 6, 4438-4453.
[20]
Dashtestani, F.; Ghourchian, H.; Eskandari, K.; Rafiee-Pour, H-A. A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim. Acta, 2015, 182(5-6), 1045-1053.
[21]
Alipour, E.; Ghourchian, H.; Boutorabi, S.M. Gold nanoparticle based capacitive immunosensor for detection of hepatitis B surface antigen. Anal. Methods, 2013, 5(17), 4448-4453.
[22]
Committee, A.M. Recommendations for the definition, estimation and use of the detection limit. Analyst, 1987, 112(2), 199-204.
[23]
Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol., 2003, 32(1), 3-13.