摘要
常染色体显性遗传多囊肾病(ADPKD)是最常见的单基因肾病,由PKD1,PKD2突变引起,或者在非常有限的家族中由GANAB基因突变引起。 尽管在过去的20年中已经了解了这种疾病的细胞和分子机制,但具体的治疗方法仍然很少。 实验和临床研究均表明,雷帕霉素(mTOR)途径的哺乳动物或机械靶标在ADPKD的囊肿形成和扩大过程中起重要作用。 在ADPKD的啮齿动物模型中的研究表明,mTOR抑制剂具有显着且持久的肾脏体积减少和肾功能的改善。 在过去的十多年中,研究人员一直致力于在ADPKD患者的临床前研究和临床试验中测试mTOR抑制剂的疗效和安全性。 在这篇综述中,我们将彻底讨论mTOR途径,主要关注当前在理解其在ADPKD中的作用的进展,特别是mTOR抑制剂在临床前研究和临床试验中的最新进展。
关键词: 常染色体显性多囊肾病,mTOR信号,mTOR抑制剂,疗效和安全性,临床前模型,临床试验。
[1]
Harris, P.C.; Torres, V.E. Polycystic kidney disease. Annu. Rev. Med., 2009, 60, 321-337. [http://dx.doi.org/10.1146/annurev.med.60.101707.125712]. [PMID: 18947299].
[2]
Torres, V.E.; Harris, P.C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int., 2009, 76(2), 149-168. [http://dx.doi.org/10.1038/ki.2009.128]. [PMID: 19455193].
[3]
Ecder, T.; Schrier, R.W. Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease. Nat. Rev. Nephrol., 2009, 5(4), 221-228. [http://dx.doi.org/10.1038/nrneph.2009.13]. [PMID: 19322187].
[4]
Sweeney, W.E., Jr; Avner, E.D. Diagnosis and management of childhood polycystic kidney disease. Pediatr. Nephrol., 2011, 26(5), 675-692. [http://dx.doi.org/10.1007/s00467-010-1656-1]. [PMID: 21046169].
[5]
Menezes, L.F.; Onuchic, L.F. Molecular and cellular pathogenesis of autosomal recessive polycystic kidney disease. Braz. J. Med. Biol. Res., 2006, 39(12), 1537-1548. [http://dx.doi.org/10.1590/S0100-879X2006001200004]. [PMID: 17160262].
[6]
Hildebrandt, F.; Attanasio, M.; Otto, E. Nephronophthisis: Disease mechanisms of a ciliopathy. J. Am. Soc. Nephrol., 2009, 20(1), 23-35. [http://dx.doi.org/10.1681/ASN.2008050456]. [PMID: 19118152].
[7]
Ibraghimov-Beskrovnaya, O.; Natoli, T.A. mTOR signaling in polycystic kidney disease. Trends Mol. Med., 2011, 17(11), 625-633. [http://dx.doi.org/10.1016/j.molmed.2011.06.003]. [PMID: 21775207].
[8]
Braun, W.E. Autosomal dominant polycystic kidney disease: emerging concepts of pathogenesis and new treatments. Cleve. Clin. J. Med., 2009, 76(2), 97-104. [http://dx.doi.org/10.3949/ccjm.76a.gr001]. [PMID: 19188475].
[9]
Kim, H.J.; Edelstein, C.L. Mammalian target of rapamycin inhibition in polycystic kidney disease: From bench to bedside. Kidney Res. Clin. Pract., 2012, 31(3), 132-138. [http://dx.doi.org/10.1016/j.krcp.2012.07.002]. [PMID: 26894018].
[10]
Gabow, P.A. Autosomal dominant polycystic kidney disease. N. Engl. J. Med., 1993, 329(5), 332-342. [http://dx.doi.org/10.1056/NEJM199307293290508]. [PMID: 8321262].
[11]
Torres, V.E. Treatment strategies and clinical trial design in ADPKD. Adv. Chronic Kidney Dis., 2010, 17(2), 190-204. [http://dx.doi.org/10.1053/j.ackd.2010.01.006]. [PMID: 20219622].
[12]
Torres, V.E.; Harris, P.C.; Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet, 2007, 369(9569), 1287-1301. [http://dx.doi.org/10.1016/S0140-6736(07)60601-1]. [PMID: 17434405].
[13]
Venkatachalam, K.; Montell, C. TRP channels. Annu. Rev. Biochem., 2007, 76, 387-417. [http://dx.doi.org/10.1146/annurev.biochem.75.103004.142819]. [PMID: 17579562].
[14]
Porath, B.; Gainullin, V.G.; Cornec-Le Gall, E.; Dillinger, E.K.; Heyer, C.M.; Hopp, K.; Edwards, M.E.; Madsen, C.D.; Mauritz, S.R.; Banks, C.J.; Baheti, S.; Reddy, B.; Herrero, J.I.; Bañales, J.M.; Hogan, M.C.; Tasic, V.; Watnick, T.J.; Chapman, A.B.; Vigneau, C.; Lavainne, F.; Audrézet, M.P.; Ferec, C.; Le Meur, Y.; Torres, V.E.; Harris, P.C. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet., 2016, 98(6), 1193-1207. [http://dx.doi.org/10.1016/j.ajhg.2016.05.004]. [PMID: 27259053].
[15]
Brook-Carter, P.T.; Peral, B.; Ward, C.J.; Thompson, P.; Hughes, J.; Maheshwar, M.M.; Nellist, M.; Gamble, V.; Harris, P.C.; Sampson, J.R. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease-a contiguous gene syndrome. Nat. Genet., 1994, 8(4), 328-332. [http://dx.doi.org/10.1038/ng1294-328]. [PMID: 7894481].
[16]
Gingras, A.C.; Raught, B.; Sonenberg, N. Regulation of translation initiation by FRAP/mTOR. Genes Dev., 2001, 15(7), 807-826. [http://dx.doi.org/10.1101/gad.887201]. [PMID: 11297505].
[17]
Yip, C.K.; Murata, K.; Walz, T.; Sabatini, D.M.; Kang, S.A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell, 2010, 38(5), 768-774. [http://dx.doi.org/10.1016/j.molcel.2010.05.017]. [PMID: 20542007].
[18]
Peterson, T.R.; Laplante, M.; Thoreen, C.C.; Sancak, Y.; Kang, S.A.; Kuehl, W.M.; Gray, N.S.; Sabatini, D.M. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell, 2009, 137(5), 873-886. [http://dx.doi.org/10.1016/j.cell.2009.03.046]. [PMID: 19446321].
[19]
Jacinto, E.; Loewith, R.; Schmidt, A.; Lin, S.; Rüegg, M.A.; Hall, A.; Hall, M.N. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol., 2004, 6(11), 1122-1128. [http://dx.doi.org/10.1038/ncb1183]. [PMID: 15467718].
[20]
Sarbassov, D.D.; Ali, S.M.; Kim, D.H.; Guertin, D.A.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol., 2004, 14(14), 1296-1302. [http://dx.doi.org/10.1016/j.cub.2004.06.054]. [PMID: 15268862].
[21]
Wullschleger, S.; Loewith, R.; Hall, M.N. TOR signaling in growth and metabolism. Cell, 2006, 124(3), 471-484. [http://dx.doi.org/10.1016/j.cell.2006.01.016]. [PMID: 16469695].
[22]
Kim, D.H.; Sarbassov, D.D.; Ali, S.M.; King, J.E.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 2002, 110(2), 163-175. [http://dx.doi.org/10.1016/S0092-8674(02)00808-5]. [PMID: 12150925].
[23]
Sarbassov, D.D.; Guertin, D.A.; Ali, S.M.; Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005, 307(5712), 1098-1101. [http://dx.doi.org/10.1126/science.1106148]. [PMID: 15718470].
[24]
Fantus, D.; Rogers, N.M.; Grahammer, F.; Huber, T.B.; Thomson, A.W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol., 2016, 12(10), 587-609. [http://dx.doi.org/10.1038/nrneph.2016.108]. [PMID: 27477490].
[25]
Bonnet, C.S.; Aldred, M.; von Ruhland, C.; Harris, R.; Sandford, R.; Cheadle, J.P. Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum. Mol. Genet., 2009, 18(12), 2166-2176. [http://dx.doi.org/10.1093/hmg/ddp149]. [PMID: 19321600].
[26]
Cai, S.L.; Walker, C.L. TSC2, a key player in tumor suppression and cystic kidney disease. Nephrol. Ther., 2006, 2(Suppl. 2), S119-S122. [PMID: 17373211].
[27]
Kleymenova, E.; Ibraghimov-Beskrovnaya, O.; Kugoh, H.; Everitt, J.; Xu, H.; Kiguchi, K.; Landes, G.; Harris, P.; Walker, C. Tuberin-dependent membrane localization of polycystin-1: A functional link between polycystic kidney disease and the TSC2 tumor suppressor gene. Mol. Cell, 2001, 7(4), 823-832. [http://dx.doi.org/10.1016/S1097-2765(01)00226-X]. [PMID: 11336705].
[28]
Canaud, G.; Knebelmann, B.; Harris, P.C.; Vrtovsnik, F.; Correas, J.M.; Pallet, N.; Heyer, C.M.; Letavernier, E.; Bienaimé, F.; Thervet, E.; Martinez, F.; Terzi, F.; Legendre, C. Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: What is the appropriate serum level? Am. J. Transplant., 2010, 10(7), 1701-1706. [http://dx.doi.org/10.1111/j.1600-6143.2010.03152.x]. [PMID: 20642692].
[29]
Shillingford, J.M.; Murcia, N.S.; Larson, C.H.; Low, S.H.; Hedgepeth, R.; Brown, N.; Flask, C.A.; Novick, A.C.; Goldfarb, D.A.; Kramer-Zucker, A.; Walz, G.; Piontek, K.B.; Germino, G.G.; Weimbs, T. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. USA, 2006, 103(14), 5466-5471. [http://dx.doi.org/10.1073/pnas.0509694103]. [PMID: 16567633].
[30]
Zafar, I.; Ravichandran, K.; Belibi, F.A.; Doctor, R.B.; Edelstein, C.L. Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int., 2010, 78(8), 754-761. [http://dx.doi.org/10.1038/ki.2010.250]. [PMID: 20686448].
[31]
Gattone, V.H., II; Sinders, R.M.; Hornberger, T.A.; Robling, A.G. Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis. Kidney Int., 2009, 76(2), 178-182. [http://dx.doi.org/10.1038/ki.2009.147]. [PMID: 19421190].
[32]
Natoli, T.A.; Smith, L.A.; Rogers, K.A.; Wang, B.; Komarnitsky, S.; Budman, Y.; Belenky, A.; Bukanov, N.O.; Dackowski, W.R.; Husson, H.; Russo, R.J.; Shayman, J.A.; Ledbetter, S.R.; Leonard, J.P.; Ibraghimov-Beskrovnaya, O. Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat. Med., 2010, 16(7), 788-792. [http://dx.doi.org/10.1038/nm.2171]. [PMID: 20562878].
[33]
Hartman, T.R.; Liu, D.; Zilfou, J.T.; Robb, V.; Morrison, T.; Watnick, T.; Henske, E.P. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum. Mol. Genet., 2009, 18(1), 151-163. [http://dx.doi.org/10.1093/hmg/ddn325]. [PMID: 18845692].
[34]
Foster, D.A.; Toschi, A. Targeting mTOR with rapamycin: one dose does not fit all. Cell Cycle, 2009, 8(7), 1026-1029. [http://dx.doi.org/10.4161/cc.8.7.8044]. [PMID: 19270529].
[35]
Cook, J.A.; Oliver, K.; Mueller, R.F.; Sampson, J. A cross sectional study of renal involvement in tuberous sclerosis. J. Med. Genet., 1996, 33(6), 480-484. [http://dx.doi.org/10.1136/jmg.33.6.480]. [PMID: 8782048].
[36]
Benjamin, D.; Colombi, M.; Moroni, C.; Hall, M.N. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat. Rev. Drug Discov., 2011, 10(11), 868-880. [http://dx.doi.org/10.1038/nrd3531]. [PMID: 22037041].
[37]
Faivre, S.; Kroemer, G.; Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov., 2006, 5(8), 671-688. [http://dx.doi.org/10.1038/nrd2062]. [PMID: 16883305].
[38]
Toschi, A.; Lee, E.; Xu, L.; Garcia, A.; Gadir, N.; Foster, D.A. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: Competition with rapamycin. Mol. Cell. Biol., 2009, 29(6), 1411-1420. [http://dx.doi.org/10.1128/MCB.00782-08]. [PMID: 19114562].
[39]
Shillingford, J.M.; Piontek, K.B.; Germino, G.G.; Weimbs, T. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J. Am. Soc. Nephrol., 2010, 21(3), 489-497. [http://dx.doi.org/10.1681/ASN.2009040421]. [PMID: 20075061].
[40]
Reichardt, W.; Romaker, D.; Becker, A.; Buechert, M.; Walz, G.; von Elverfeldt, D. Monitoring kidney and renal cyst volumes applying MR approaches on a rapamycin treated mouse model of ADPKD. MAGMA, 2009, 22(3), 143-149. [http://dx.doi.org/10.1007/s10334-008-0158-7]. [PMID: 19107537].
[41]
Tao, Y.; Kim, J.; Schrier, R.W.; Edelstein, C.L. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol., 2005, 16(1), 46-51. [http://dx.doi.org/10.1681/ASN.2004080660]. [PMID: 15563559].
[42]
Wahl, P.R.; Serra, A.L.; Le Hir, M.; Molle, K.D.; Hall, M.N.; Wüthrich, R.P. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with Autosomal Dominant Polycystic Kidney Disease (ADPKD). Nephrol. Dial. Transplant., 2006, 21(3), 598-604. [http://dx.doi.org/10.1093/ndt/gfi181]. [PMID: 16221708].
[43]
Renken, C.; Fischer, D.C.; Kundt, G.; Gretz, N.; Haffner, D. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol. Dial. Transplant., 2011, 26(1), 92-100. [http://dx.doi.org/10.1093/ndt/gfq384]. [PMID: 20615907].
[44]
Belibi, F.; Ravichandran, K.; Zafar, I.; He, Z.; Edelstein, C.L. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am. J. Physiol. Renal Physiol., 2011, 300(1), F236-F244. [http://dx.doi.org/10.1152/ajprenal.00129.2010]. [PMID: 20943770].
[45]
Pema, M.; Drusian, L.; Chiaravalli, M.; Castelli, M.; Yao, Q.; Ricciardi, S.; Somlo, S.; Qian, F.; Biffo, S.; Boletta, A. mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex. Nat. Commun., 2016, 7, 10786. [http://dx.doi.org/10.1038/ncomms10786]. [PMID: 26931735].
[46]
Wu, M.; Arcaro, A.; Varga, Z.; Vogetseder, A.; Le Hir, M.; Wüthrich, R.P.; Serra, A.L. Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease. Am. J. Physiol. Renal Physiol., 2009, 297(6), F1597-F1605. [http://dx.doi.org/10.1152/ajprenal.00430.2009]. [PMID: 19776171].
[47]
Wu, M.; Wahl, P.R.; Le Hir, M.; Wackerle-Men, Y.; Wuthrich, R.P.; Serra, A.L. Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press. Res., 2007, 30(4), 253-259. [http://dx.doi.org/10.1159/000104818]. [PMID: 17596700].
[48]
Grantham, J.J.; Torres, V.E.; Chapman, A.B.; Guay-Woodford, L.M.; Bae, K.T.; King, B.F., Jr; Wetzel, L.H.; Baumgarten, D.A.; Kenney, P.J.; Harris, P.C.; Klahr, S.; Bennett, W.M.; Hirschman, G.N.; Meyers, C.M.; Zhang, X.; Zhu, F.; Miller, J.P. Volume progression in polycystic kidney disease. N. Engl. J. Med., 2006, 354(20), 2122-2130. [http://dx.doi.org/10.1056/NEJMoa054341]. [PMID: 16707749].
[49]
Torres, V.E.; Boletta, A.; Chapman, A.; Gattone, V.; Pei, Y.; Qian, Q.; Wallace, D.P.; Weimbs, T.; Wüthrich, R.P. Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases. Clin. J. Am. Soc. Nephrol., 2010, 5(7), 1312-1329. [http://dx.doi.org/10.2215/CJN.01360210]. [PMID: 20498248].
[50]
Qian, Q.; Du, H.; King, B.F.; Kumar, S.; Dean, P.G.; Cosio, F.G.; Torres, V.E. Sirolimus reduces polycystic liver volume in ADPKD patients. J. Am. Soc. Nephrol., 2008, 19(3), 631-638. [http://dx.doi.org/10.1681/ASN.2007050626]. [PMID: 18199797].
[51]
Serra, A.L.; Poster, D.; Kistler, A.D.; Krauer, F.; Raina, S.; Young, J.; Rentsch, K.M.; Spanaus, K.S.; Senn, O.; Kristanto, P.; Scheffel, H.; Weishaupt, D.; Wüthrich, R.P. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2010, 363(9), 820-829. [http://dx.doi.org/10.1056/NEJMoa0907419]. [PMID: 20581391].
[52]
Walz, G.; Budde, K.; Mannaa, M.; Nürnberger, J.; Wanner, C.; Sommerer, C.; Kunzendorf, U.; Banas, B.; Hörl, W.H.; Obermüller, N.; Arns, W.; Pavenstädt, H.; Gaedeke, J.; Büchert, M.; May, C.; Gschaidmeier, H.; Kramer, S.; Eckardt, K.U. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2010, 363(9), 830-840. [http://dx.doi.org/10.1056/NEJMoa1003491]. [PMID: 20581392].
[53]
Huber, T.B.; Walz, G.; Kuehn, E.W. mTOR and rapamycin in the kidney: Signaling and therapeutic implications beyond immunosuppression. Kidney Int., 2011, 79(5), 502-511. [http://dx.doi.org/10.1038/ki.2010.457]. [PMID: 21085109].
[54]
Perico, N.; Antiga, L.; Caroli, A.; Ruggenenti, P.; Fasolini, G.; Cafaro, M.; Ondei, P.; Rubis, N.; Diadei, O.; Gherardi, G.; Prandini, S.; Panozo, A.; Bravo, R.F.; Carminati, S.; De Leon, F.R.; Gaspari, F.; Cortinovis, M.; Motterlini, N.; Ene-Iordache, B.; Remuzzi, A.; Remuzzi, G. Sirolimus therapy to halt the progression of ADPKD. J. Am. Soc. Nephrol., 2010, 21(6), 1031-1040. [http://dx.doi.org/10.1681/ASN.2009121302]. [PMID: 20466742].
[55]
Ponticelli, C.; Locatelli, F. Autosomal dominant polycystic kidney disease and mTOR inhibitors: the narrow road between hope and disappointment. Nephrol. Dial. Transplant., 2010, 25(12), 3809-3812. [http://dx.doi.org/10.1093/ndt/gfq527]. [PMID: 20798121].
[56]
Roychowdhury, A.; Sharma, R.; Kumar, S. Recent advances in the discovery of small molecule mTOR inhibitors. Future Med. Chem., 2010, 2(10), 1577-1589. [http://dx.doi.org/10.4155/fmc.10.233]. [PMID: 21426150].
[57]
Head, S.A.; Shi, W.Q.; Yang, E.J.; Nacev, B.A.; Hong, S.Y.; Pasunooti, K.K.; Li, R.J.; Shim, J.S.; Liu, J.O. Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis. ACS Chem. Biol., 2017, 12(1), 174-182. [http://dx.doi.org/10.1021/acschembio.6b00849]. [PMID: 28103683].
[58]
McCarty, M.F.; Barroso-Aranda, J.; Contreras, F. Activation of AMP-activated kinase as a strategy for managing autosomal dominant polycystic kidney disease. Med. Hypotheses, 2009, 73(6), 1008-1010. [http://dx.doi.org/10.1016/j.mehy.2009.05.043]. [PMID: 19570618].
[59]
Takiar, V.; Nishio, S.; Seo-Mayer, P.; King, J.D., Jr; Li, H.; Zhang, L.; Karihaloo, A.; Hallows, K.R.; Somlo, S.; Caplan, M.J. Activating AMP-Activated Protein Kinase (AMPK) slows renal cystogenesis. Proc. Natl. Acad. Sci. USA, 2011, 108(6), 2462-2467. [http://dx.doi.org/10.1073/pnas.1011498108]. [PMID: 21262823].
[60]
Ruggenenti, P.; Gentile, G.; Perico, N.; Perna, A.; Barcella, L.; Trillini, M.; Cortinovis, M.; Ferrer Siles, C.P.; Reyes Loaeza, J.A.; Aparicio, M.C.; Fasolini, G.; Gaspari, F.; Martinetti, D.; Carrara, F.; Rubis, N.; Prandini, S.; Caroli, A.; Sharma, K.; Antiga, L.; Remuzzi, A.; Remuzzi, G. Effect of sirolimus on disease progression in patients with autosomal dominant polycystic kidney disease and CKD stages 3b-4. Clin. J. Am. Soc. Nephrol., 2016, 11(5), 785-794. [http://dx.doi.org/10.2215/CJN.09900915]. [PMID: 26912555].
[61]
Xue, C.; Dai, B.; Mei, C. Long-term treatment with mammalian target of rapamycin inhibitor does not benefit patients with autosomal dominant polycystic kidney disease: a meta-analysis. Nephron Clin. Pract., 2013, 124(1-2), 10-16. [http://dx.doi.org/10.1159/000354398]. [PMID: 24022660].
[62]
Shillingford, J.M.; Leamon, C.P.; Vlahov, I.R.; Weimbs, T. Folate-conjugated rapamycin slows progression of polycystic kidney disease. J. Am. Soc. Nephrol., 2012, 23(10), 1674-1681. [http://dx.doi.org/10.1681/ASN.2012040367]. [PMID: 22859856].
[63]
Riegersperger, M.; Herkner, H.; Sunder-Plassmann, G. Pulsed oral sirolimus in advanced autosomal-dominant polycystic kidney disease (Vienna RAP Study): Study protocol for a randomized controlled trial. Trials, 2015, 16, 182. [http://dx.doi.org/10.1186/s13063-015-0692-3]. [PMID: 25899445].
[64]
Braun, W.E.; Schold, J.D.; Stephany, B.R.; Spirko, R.A.; Herts, B.R. Low-dose rapamycin (sirolimus) effects in autosomal dominant polycystic kidney disease: an open-label randomized controlled pilot study. Clin. J. Am. Soc. Nephrol., 2014, 9(5), 881-888. [http://dx.doi.org/10.2215/CJN.02650313]. [PMID: 24721888].