Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Pigments from Filamentous Ascomycetes for Combination Therapy

Author(s): Róbert Hromádka, Zdeněk Kejík, Milan Jakubek, Robert Kaplánek, Viera Šandriková, Marian Urban, Pavel Martásek and Vladimír Král*

Volume 26, Issue 20, 2019

Page: [3812 - 3834] Pages: 23

DOI: 10.2174/0929867325666180330091933

Price: $65

Abstract

Filamentous ascomycetes (Neurospora and Monascus) have been studied for a long time because of their production of secondary metabolites such as microbial pigments. The ascomycetes represent an interesting group of compounds with high potential for medicinal applications. Many recent studies have shown their efficacy in the treatment of serious pathological states such as oncological diseases, neurodegenerative diseases and hyperlipidaemia. Nevertheless, the clinical usability of ascomycetes is still limited. However, this problem can be solved by the use of these compounds with combinations of other therapeutic agents. This strategy can suppress their side effects and improve their therapeutic efficacy. Moreover, their co-application can significantly enhance conventional therapies that are used. This review summarizes and discusses the general principles of this approach, introduced and supported by numerous examples. In addition, the prediction of the future potential application of this methodology is included.

Keywords: Filamentous ascomycetes, Neurospora and Monascus, microbial pigments, filamentous fungi, HMGCoA reductase, oncological diseases, hyperlipidaemia.

« Previous
[1]
Gmoser, R.; Ferreira, J.A.; Lennartsson, P.R.; Taherzadeh, M.J. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol. Biotechnol., 2017, 4(1), 4.
[http://dx.doi.org/10.1186/s40694-017-0033-2] [PMID: 28955473]
[2]
Martínková, L.; Patáková-Jůzlová, P.; Krent, V.; Kucerová, Z.; Havlícek, V.; Olsovský, P.; Hovorka, O.; Ríhová, B.; Veselý, D.; Veselá, D.; Ulrichová, J.; Prikrylová, V. Biological activities of oligoketide pigments of Monascus purpureus. Food Addit. Contam., 1999, 16(1), 15-24.
[http://dx.doi.org/10.1080/026520399284280] [PMID: 11565571]
[3]
Schreiberova, O., Ed.; Patrovský M. and P. P., Produkce sekundárních metabolitů houbou Monascus purpureus, in 12. seminář PIVOVARSTVÍ A KVASNÉ TECHNOLOGIE 2015; Prague, Czech republic, , 2015.
[4]
Patakova, P. Monascus secondary metabolites: production and biological activity. J. Ind. Microbiol. Biotechnol., 2013, 40(2), 169-181.
[http://dx.doi.org/10.1007/s10295-012-1216-8] [PMID: 23179468]
[5]
Avalos, J.; Prado-Cabrero, A.; Estrada, A.F. Neurosporaxanthin production by Neurospora and Fusarium. Methods Mol. Biol., 2012, 898, 263-274.
[http://dx.doi.org/10.1007/978-1-61779-918-1_18] [PMID: 22711132]
[6]
Sandmann, G.; Takaichi, S.; Fraser, P.D.C. (35)-apocarotenoids in the yellow mutant Neurospora crassa YLO. Phytochemistry, 2008, 69(17), 2886-2890.
[http://dx.doi.org/10.1016/j.phytochem.2008.09.016] [PMID: 19007949]
[7]
Xu, N.; Shen, N.; Wang, X.; Jiang, S.; Xue, B.; Li, C. Protein prenylation and human diseases: a balance of protein farnesylation and geranylgeranylation. Sci. China Life Sci., 2015, 58(4), 328-335.
[http://dx.doi.org/10.1007/s11427-015-4836-1] [PMID: 25862656]
[8]
Thapa, A.; Carroll, N.J. Dietary modulation of oxidative stress in alzheimer’s disease. Int. J. Mol. Sci., 2017, 18(7)E1583
[http://dx.doi.org/10.3390/ijms18071583] [PMID: 28753984]
[9]
Limon-Miro, A.T.; Lopez-Teros, V.; Astiazaran-Garcia, H. Dietary guidelines for breast cancer patients: a critical review. Adv. Nutr., 2017, 8(4), 613-623.
[PMID: 28710147]
[10]
Wu, L.; Guo, X.; Wang, W.; Medeiros, D.M.; Clarke, S.L.; Lucas, E.A.; Smith, B.J.; Lin, D. Molecular aspects of β, β-carotene-9′, 10′-oxygenase 2 in carotenoid metabolism and diseases. Exp. Biol. Med. (Maywood), 2016, 241(17), 1879-1887.
[http://dx.doi.org/10.1177/1535370216657900] [PMID: 27390265]
[11]
Bonet, M.L.; Canas, J.A.; Ribot, J.; Palou, A. Carotenoids in adipose tissue biology and obesity. Subcell. Biochem., 2016, 79, 377-414.
[http://dx.doi.org/10.1007/978-3-319-39126-7_15] [PMID: 27485231]
[12]
Bahonar, A.; Saadatnia, M.; Khorvash, F.; Maracy, M.; Khosravi, A. Carotenoids as potential antioxidant agents in stroke prevention: a systematic review. Int. J. Prev. Med., 2017, 8, 70.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_112_17] [PMID: 28983399]
[13]
Kejík, Z.; Bříza, T.; Králová, J.; Poučková, P.; Král, A.; Martásek, P.; Král, V. Coordination conjugates of therapeutic proteins with drug carriers: a new approach for versatile advanced drug delivery. Bioorg. Med. Chem. Lett., 2011, 21(18), 5514-5520.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.101] [PMID: 21784635]
[14]
Králová, J.; Kejík, Z.; Bríza, T.; Poucková, P.; Král, A.; Martásek, P.; Král, V. Porphyrin-cyclodextrin conjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy. J. Med. Chem., 2010, 53(1), 128-138.
[http://dx.doi.org/10.1021/jm9007278] [PMID: 19950899]
[15]
Kejik, Z. Cyclodextrin dimer with porphyrin core for target transport and combined therapy. J. Control. Release, 2008, 132(3), E27-E28.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.016]
[16]
Záruba, K.; Králová, J.; Rezanka, P.; Poucková, P.; Veverková, L.; Král, V. Modified porphyrin-brucine conjugated to gold nanoparticles and their application in photodynamic therapy. Org. Biomol. Chem., 2010, 8(14), 3202-3206.
[http://dx.doi.org/10.1039/c002823a] [PMID: 20485822]
[17]
Tocci, G. How to improve effectiveness and adherence to antihypertensive drug therapy: central role of dihydropyridinic calcium channel blockers in hypertension. High Blood Press. Cardiovasc. Prev., 2018, 25(1), 25-34.
[http://dx.doi.org/10.1007/s40292-017-0242-z] [PMID: 29197935]
[18]
Bhattacharjee, S.; Nandi, S. Synthetic lethality in DNA repair network: a novel avenue in targeted cancer therapy and combination therapeutics. IUBMB Life, 2017, 69(12), 929-937.
[http://dx.doi.org/10.1002/iub.1696] [PMID: 29171189]
[19]
Gugliandolo, A.; Bramanti, P.; Mazzon, E. Role of Vitamin E in the treatment of Alzheimer’s Disease: evidence from animal models. Int. J. Mol. Sci., 2017, 18(12), 2504.
[http://dx.doi.org/10.3390/ijms18122504] [PMID: 29168797]
[20]
Matsunaga, S.; Kishi, T.; Iwata, N. Combination therapy with cholinesterase inhibitors and memantine for Alzheimer’s disease: a systematic review and meta-analysis. Int. J. Neuropsychopharmacol., 2014, 18(5)pyu115
[PMID: 25548104]
[21]
Lee, H-Y.; Kim, S.Y.; Choi, K.J.; Yoo, B.S.; Cha, D.H.; Jung, H.O.; Ryu, D.R.; Choi, J.H.; Lee, K.J.; Park, T.H.; Oh, J.H.; Kim, S.M.; Choi, J.Y.; Kim, K.H.; Shim, J.; Kim, W.S.; Choi, S.W.; Park, D.G.; Song, P.S.; Hong, T.J.; Rhee, M.Y.; Rha, S.W.; Park, S.W.A. Randomized, multicenter, double-blind, placebo-controlled study to evaluate the efficacy and the tolerability of a triple combination of amlodipine/losartan/rosuvastatin in patients with comorbid essential hypertension and hyperlipidemia. Clin. Ther., 2017, 39(12), 2366-2379.
[http://dx.doi.org/10.1016/j.clinthera.2017.10.013] [PMID: 29150250]
[22]
Simons, L.A.; Chung, E.; Ortiz, M. Long-term persistence with single-pill, fixed-dose combination therapy versus two pills of amlodipine and perindopril for hypertension: Australian experience. Curr. Med. Res. Opin., 2017, 33(10), 1783-1787.
[http://dx.doi.org/10.1080/03007995.2017.1367275] [PMID: 28805468]
[23]
Herrando-Grabulosa, M.; Mulet, R.; Pujol, A.; Mas, J.M.; Navarro, X.; Aloy, P.; Coma, M.; Casas, C. Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems. PLoS One, 2016, 11(1)e0147626
[http://dx.doi.org/10.1371/journal.pone.0147626] [PMID: 26807587]
[24]
Kejik, Z. Supramolecular approach for target transport of photodynamic anticancer agents. Supramol. Chem., 2012, 24(2), 106-116.
[http://dx.doi.org/10.1080/10610278.2011.631705]
[25]
Brogi, S.; Ramunno, A.; Savi, L.; Chemi, G.; Alfano, G.; Pecorelli, A.; Pambianchi, E.; Galatello, P.; Compagnoni, G.; Focher, F.; Biamonti, G.; Valacchi, G.; Butini, S.; Gemma, S.; Campiani, G.; Brindisi, M. First dual AK/GSK-3β inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. Eur. J. Med. Chem., 2017, 138, 438-457.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.017] [PMID: 28689095]
[26]
Liu, J.; Qian, C.; Zhu, Y.; Cai, J.; He, Y.; Li, J.; Wang, T.; Zhu, H.; Li, Z.; Li, W.; Hu, L. Design, Synthesis and Evaluate of novel dual FGFR1 and HDAC inhibitors bearing an indazole scaffold. Bioorg. Med. Chem., 2018, 26(3), 747-757.
[http://dx.doi.org/10.1016/j.bmc.2017.12.041] [PMID: 29317150]
[27]
Monastyrskyi, A.; Nilchan, N.; Quereda, V.; Noguchi, Y.; Ruiz, C.; Grant, W.; Cameron, M.; Duckett, D.; Roush, W. Development of dual casein kinase 1δ/1ε (CK1δ/ε) inhibitors for treatment of breast cancer. Bioorg. Med. Chem., 2018, 26(3), 590-602.
[http://dx.doi.org/10.1016/j.bmc.2017.12.020] [PMID: 29289448]
[28]
Chen, W.; Huang, Z.; Wang, W.; Mao, F.; Guan, L.; Tang, Y.; Jiang, H.; Li, J.; Huang, J.; Jiang, L.; Zhu, J. Discovery of new antimalarial agents: Second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely. Bioorg. Med. Chem., 2017, 25(24), 6467-6478.
[http://dx.doi.org/10.1016/j.bmc.2017.10.017] [PMID: 29111368]
[29]
Wang, C.; Yang, D.; Jiang, L.; Wang, S.; Wang, J.; Zhou, K.; Shi, X.; Chang, L.; Liu, Y.; Ke, Y.; Liu, H. Jesridonin in combination with paclitaxel demonstrates synergistic anti-tumor activity in human esophageal carcinoma cells. Bioorg. Med. Chem. Lett., 2017, 27(9), 2058-2062.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.008] [PMID: 28285918]
[30]
Tunc, D.; Dere, E.; Karakas, D.; Cevatemre, B.; Yilmaz, V.T.; Ulukaya, E. Cytotoxic and apoptotic effects of the combination of palladium (II) 5,5-diethylbarbiturate complex with bis(2-pyridylmethyl)amine and curcumin on non small lung cancer cell lines. Bioorg. Med. Chem., 2017, 25(5), 1717-1723.
[http://dx.doi.org/10.1016/j.bmc.2017.01.043] [PMID: 28187956]
[31]
Byun, J.S.; Sohn, J.M.; Leem, D.G.; Park, B.; Nam, J.H.; Shin, D.H.; Shin, J.S.; Kim, H.J.; Lee, K.T.; Lee, J.Y. In vitro synergistic anticancer activity of the combination of T-type calcium channel blocker and chemotherapeutic agent in A549 cells. Bioorg. Med. Chem. Lett., 2016, 26(3), 1073-1079.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.010] [PMID: 26739776]
[32]
Bayomy, N.A.; Elbakary, R.H.; Ibrahim, M.A.A.; Abdelaziz, E.Z. Effect of lycopene and rosmarinic acid on gentamicin induced renal cortical oxidative stress, apoptosis, and autophagy in adult male albino rat. Anat. Rec. (Hoboken), 2017, 300(6), 1137-1149.
[http://dx.doi.org/10.1002/ar.23525] [PMID: 27884046]
[33]
Kumar, V.; Sharma, S.K.; Nagarajan, K.; Dixit, P.K. Effects of lycopene and sodium valproate on pentylenetetrazol-induced kindling in mice. Iran. J. Med. Sci., 2016, 41(5), 430-436.
[PMID: 27582593]
[34]
Banji, D.; Banji, O.J.; Reddy, M.; Annamalai, A.R. Impact of zinc, selenium and lycopene on capsaicin induced mutagenicity and oxidative damage in mice. J. Trace Elem. Med. Biol., 2013, 27(3), 230-235.
[http://dx.doi.org/10.1016/j.jtemb.2013.01.001] [PMID: 23380154]
[35]
Yang, S.H.; Lin, H.Y.; Chang, V.H.; Chen, C.C.; Liu, Y.R.; Wang, J.; Zhang, K.; Jiang, X.; Yen, Y. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget, 2015, 6(27), 23857-23873.
[http://dx.doi.org/10.18632/oncotarget.4408] [PMID: 26160843]
[36]
Wali, V.B.; Sylvester, P.W. Synergistic antiproliferative effects of gamma-tocotrienol and statin treatment on mammary tumor cells. Lipids, 2007, 42(12), 1113-1123.
[http://dx.doi.org/10.1007/s11745-007-3102-0] [PMID: 17701065]
[37]
Roelofs, A.J.; Edwards, C.M.; Russell, R.G.; Ebetino, F.H.; Rogers, M.J.; Hulley, P.A. Apomine enhances the antitumor effects of lovastatin on myeloma cells by down-regulating 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Pharmacol. Exp. Ther., 2007, 322(1), 228-235.
[http://dx.doi.org/10.1124/jpet.106.116467] [PMID: 17412884]
[38]
Park, I.H.; Kim, J.Y.; Jung, J.I.; Han, J.Y. Lovastatin overcomes gefitinib resistance in human non-small cell lung cancer cells with K-Ras mutations. Invest. New Drugs, 2010, 28(6), 791-799.
[http://dx.doi.org/10.1007/s10637-009-9319-4] [PMID: 19760159]
[39]
Mantha, A.J.; Hanson, J.E.; Goss, G.; Lagarde, A.E.; Lorimer, I.A.; Dimitroulakos, J. Targeting the mevalonate pathway inhibits the function of the epidermal growth factor receptor. Clin. Cancer Res., 2005, 11(6), 2398-2407.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1951] [PMID: 15788691]
[40]
Liu, P.C. Inhibition of NF-kappa B Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) Combination Therapy. PLoS One, 2017, 12(1)e0171157
[http://dx.doi.org/10.1371/journal.pone.0171157] [PMID: 28135339]
[41]
Chiu, H.W.; Fang, W.H.; Chen, Y.L.; Wu, M.D.; Yuan, G.F.; Ho, S.Y.; Wang, Y.J. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One, 2012, 7(7)e40462
[http://dx.doi.org/10.1371/journal.pone.0040462] [PMID: 22802963]
[42]
Chen, R.J.; Hung, C.M.; Chen, Y.L.; Wu, M.D.; Yuan, G.F.; Wang, Y.J. Monascuspiloin induces apoptosis and autophagic cell death in human prostate cancer cells via the Akt and AMPK signaling pathways. J. Agric. Food Chem., 2012, 60(29), 7185-7193.
[http://dx.doi.org/10.1021/jf3016927] [PMID: 22738037]
[43]
Chen, R.J. Monascuspiloin: A monascin analogue induces apoptosis and autophagic cell death in human prostate cancer cells via the Akt and AMPK signaling pathways. Free Radic. Biol. Med., 2012, 53, S116-S117.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.243]
[44]
Giermasz, A.; Makowski, M.; Kozłowska, E.; Nowis, D.; Maj, M.; Jalili, A.; Feleszko, W.; Wójcik, C.; Dabrowska, A.; Jakóbisiak, M.; Gołab, J. Potentiating antitumor effects of a combination therapy with lovastatin and butyrate in the Lewis lung carcinoma model in mice. Int. J. Cancer, 2002, 97(6), 746-750.
[http://dx.doi.org/10.1002/ijc.10119] [PMID: 11857349]
[45]
Cemeus, C.; Zhao, T.T.; Barrett, G.M.; Lorimer, I.A.; Dimitroulakos, J. Lovastatin enhances gefitinib activity in glioblastoma cells irrespective of EGFRvIII and PTEN status. J. Neurooncol., 2008, 90(1), 9-17.
[http://dx.doi.org/10.1007/s11060-008-9627-0] [PMID: 18566746]
[46]
Zhang, Y.; Zhu, X.; Huang, T.; Chen, L.; Liu, Y.; Li, Q.; Song, J.; Ma, S.; Zhang, K.; Yang, B.; Guan, F. β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro. Toxicol. Lett., 2016, 261, 49-58.
[http://dx.doi.org/10.1016/j.toxlet.2016.08.010] [PMID: 27586268]
[47]
Rozados, V.R.; Hinrichsen, L.I.; Binda, M.M.; Gervasoni, S.I.; Matar, P.; Bonfil, R.D.; Scharovsky, O.G. Lovastatin enhances the antitumoral and apoptotic activity of doxorubicin in murine tumor models. Oncol. Rep., 2008, 19(5), 1205-1211.
[http://dx.doi.org/10.3892/or.19.5.1205] [PMID: 18425377]
[48]
Moriceau, G.; Roelofs, A.J.; Brion, R.; Redini, F.; Ebetion, F.H.; Rogers, M.J.; Heymann, D. Synergistic inhibitory effect of apomine and lovastatin on osteosarcoma cell growth. Cancer, 2012, 118(3), 750-760.
[http://dx.doi.org/10.1002/cncr.26336] [PMID: 21751201]
[49]
McAnally, J.A.; Gupta, J.; Sodhani, S.; Bravo, L.; Mo, H. Tocotrienols potentiate lovastatin-mediated growth suppression in vitro and in vivo. Exp. Biol. Med. (Maywood), 2007, 232(4), 523-531.
[PMID: 17392488]
[50]
Hus, M.; Grzasko, N.; Szostek, M.; Pluta, A.; Helbig, G.; Woszczyk, D.; Adamczyk-Cioch, M.; Jawniak, D.; Legiec, W.; Morawska, M.; Kozinska, J.; Waciński, P.; Dmoszynska, A. Thalidomide, dexamethasone and lovastatin with autologous stem cell transplantation as a salvage immunomodulatory therapy in patients with relapsed and refractory multiple myeloma. Ann. Hematol., 2011, 90(10), 1161-1166.
[http://dx.doi.org/10.1007/s00277-011-1276-2] [PMID: 21698395]
[51]
Paintlia, A.S.; Paintlia, M.K.; Singh, I.; Skoff, R.B.; Singh, A.K. Combination therapy of lovastatin and rolipram provides neuroprotection and promotes neurorepair in inflammatory demyelination model of multiple sclerosis. Glia, 2009, 57(2), 182-193.
[http://dx.doi.org/10.1002/glia.20745] [PMID: 18720408]
[52]
Paintlia, A.S.; Paintlia, M.K.; Singh, I.; Singh, A.K. Immunomodulatory effect of combination therapy with lovastatin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside alleviates neurodegeneration in experimental autoimmune encephalomyelitis. Am. J. Pathol., 2006, 169(3), 1012-1025.
[http://dx.doi.org/10.2353/ajpath.2006.051309] [PMID: 16936274]
[53]
Paintlia, A.S.; Paintlia, M.K.; Singh, I.; Singh, A.K. Combined medication of lovastatin with rolipram suppresses severity of experimental autoimmune encephalomyelitis. Exp. Neurol., 2008, 214(2), 168-180.
[http://dx.doi.org/10.1016/j.expneurol.2008.07.024] [PMID: 18775426]
[54]
Paintlia, A.S.; Mohan, S.; Singh, I. Combinatorial effect of metformin and lovastatin impedes T-cell autoimmunity and neurodegeneration in experimental autoimmune encephalomyelitis. J. Clin. Cell. Immunol., 2013, 4, 4.
[http://dx.doi.org/10.4172/2155-9899.1000149] [PMID: 24324917]
[55]
Zambón, D.; Ros, E.; Rodriguez-Villar, C.; Laguna, J.C.; Vázquez, M.; Sanllehy, C.; Casals, E.; Sol, J.M.; Hernández, G. Randomized crossover study of gemfibrozil versus lovastatin in familial combined hyperlipidemia: additive effects of combination treatment on lipid regulation. Metabolism, 1999, 48(1), 47-54.
[http://dx.doi.org/10.1016/S0026-0495(99)90009-4] [PMID: 9920144]
[56]
Hunninghake, D.B.; McGovern, M.E.; Koren, M.; Brazg, R.; Murdock, D.; Weiss, S.; Pearson, T. A dose-ranging study of a new, once-daily, dual-component drug product containing niacin extended-release and lovastatin. Clin. Cardiol., 2003, 26(3), 112-118.
[http://dx.doi.org/10.1002/clc.4960260304] [PMID: 12685616]
[57]
Kashyap, M.L.; McGovern, M.E.; Berra, K.; Guyton, J.R.; Kwiterovich, P.O.; Harper, W.L.; Toth, P.D.; Favrot, L.K.; Kerzner, B.; Nash, S.D.; Bays, H.E.; Simmons, P.D. Long-term safety and efficacy of a once-daily niacin/lovastatin formulation for patients with dyslipidemia. Am. J. Cardiol., 2002, 89(6), 672-678.
[http://dx.doi.org/10.1016/S0002-9149(01)02338-4] [PMID: 11897208]
[58]
Insull, W., Jr; McGovern, M.E.; Schrott, H.; Thompson, P.; Crouse, J.R.; Zieve, F.; Corbelli, J. Efficacy of extended-release niacin with lovastatin for hypercholesterolemia: assessing all reasonable doses with innovative surface graph analysis. Arch. Intern. Med., 2004, 164(10), 1121-1127.
[http://dx.doi.org/10.1001/archinte.164.10.1121] [PMID: 15159270]
[59]
Davidson, M.H.; Toth, P.; Weiss, S.; McKenney, J.; Hunninghake, D.; Isaacsohn, J.; Donovan, J.M.; Burke, S.K. Low-dose combination therapy with colesevelam hydrochloride and lovastatin effectively decreases low-density lipoprotein cholesterol in patients with primary hypercholesterolemia. Clin. Cardiol., 2001, 24(6), 467-474.
[http://dx.doi.org/10.1002/clc.4960240610] [PMID: 11403509]
[60]
Orekhov, A.N.; Tertov, V.V.; Sobenin, I.A.; Akhmedzhanov, N.M.; Pivovarova, E.M. Antiatherosclerotic and antiatherogenic effects of a calcium antagonist plus statin combination: amlodipine and lovastatin. Int. J. Cardiol., 1997, 62(Suppl. 2), S67-S77.
[http://dx.doi.org/10.1016/S0167-5273(97)00243-X] [PMID: 9488197]
[61]
Assis, R.P.; Arcaro, C.A.; Gutierres, V.O.; Oliveira, J.O.; Costa, P.I.; Baviera, A.M.; Brunetti, I.L. Combined Effects of Curcumin and Lycopene or Bixin in Yoghurt on inhibition of LDL Oxidation and increases in HDL and paraoxonase levels in streptozotocin-diabetic rats. Int. J. Mol. Sci., 2017, 18(4)E332
[http://dx.doi.org/10.3390/ijms18040332] [PMID: 28333071]
[62]
Gerards, M.C.; Terlou, R.J.; Yu, H.; Koks, C.H.; Gerdes, V.E. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain - a systematic review and meta-analysis. Atherosclerosis, 2015, 240(2), 415-423.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.04.004] [PMID: 25897793]
[63]
Childress, L.; Gay, A.; Zargar, A.; Ito, M.K. Review of red yeast rice content and current Food and Drug Administration oversight. J. Clin. Lipidol., 2013, 7(2), 117-122.
[http://dx.doi.org/10.1016/j.jacl.2012.09.003] [PMID: 23415430]
[64]
Peng, D.; Fong, A.; Pelt, A.V. Original research: The effects of red yeast rice supplementation on cholesterol levels in adults. Am. J. Nurs., 2017, 117(8), 46-54.
[http://dx.doi.org/10.1097/01.NAJ.0000521973.38717.2e] [PMID: 28749884]
[65]
Rajasekaran, A.; Kalaivani, M. Protective effect of Monascus fermented rice against STZ-induced diabetic oxidative stress in kidney of rats. J. Food Sci. Technol., 2015, 52(3), 1434-1443.
[http://dx.doi.org/10.1007/s13197-013-1191-8] [PMID: 25745211]
[66]
Handa, C.L.; de Lima, F.S.; Guelfi, M.F.; Georgetti, S.R.; Ida, E.I. Multi-response optimisation of the extraction solvent system for phenolics and antioxidant activities from fermented soy flour using a simplex-centroid design. . Food Chem, 2016, 197(Pt A), 175-184.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.124] [PMID: 26616938]
[67]
Tseng, W.T.; Hsu, Y.W.; Pan, T.M. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells. Pharm. Biol., 2016, 54(8), 1434-1444.
[http://dx.doi.org/10.3109/13880209.2015.1104698] [PMID: 26794209]
[68]
Tseng, W.T.; Hsu, Y.W.; Pan, T.M. The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson’s disease. Food Funct., 2016, 7(2), 752-762.
[http://dx.doi.org/10.1039/C5FO00976F] [PMID: 26809317]
[69]
Shi, Y.C.; Pan, T.M.; Liao, V.H. Monascin from monascus-fermented products reduces oxidative stress and amyloid-β toxicity via DAF-16/FOXO in Caenorhabditis elegans. J. Agric. Food Chem., 2016, 64(38), 7114-7120.
[http://dx.doi.org/10.1021/acs.jafc.6b02779] [PMID: 27554775]
[70]
Pyo, Y.H.; Seong, K.S. Effects of Monascus-fermented grain extracts on plasma antioxidant status and tissue levels of ubiquinones and α-tocopherol in hyperlipidemic rats. Food Chem., 2013, 141(1), 428-435.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.110] [PMID: 23768376]
[71]
Huang, C.S.; Hu, H.H.; Tsai, Y.M.; Chang, W.T. In vitro effects of Monascus purpureus on antioxidation activity during fermentation of Kinmen sorghum liquor waste. J. Biosci. Bioeng., 2013, 115(4), 418-423.
[http://dx.doi.org/10.1016/j.jbiosc.2012.11.003] [PMID: 23266115]
[72]
Wang, P.; Chen, D.; Jiang, D.; Dong, X.; Chen, P.; Lin, Y. Alkali extraction and in vitro antioxidant activity of Monascus mycelium polysaccharides. J. Food Sci. Technol., 2014, 51(7), 1251-1259.
[http://dx.doi.org/10.1007/s13197-012-0618-y] [PMID: 24966417]
[73]
Hromadka, R. Example of successful industrial partnership with Charles University and Academy of Science of Czech Republic in Collaboration of academic and application sphere; Vestec: Czech Republic, 2016.
[74]
Chen, F.; Hu, J.; Liu, P.; Li, J.; Wei, Z.; Liu, P. Carotenoid intake and risk of non-Hodgkin lymphoma: a systematic review and dose-response meta-analysis of observational studies. Ann. Hematol., 2017, 96(6), 957-965.
[http://dx.doi.org/10.1007/s00277-016-2898-1] [PMID: 28011986]
[75]
Chen, J.; Jiang, W.; Shao, L.; Zhong, D.; Wu, Y.; Cai, J. Association between intake of antioxidants and pancreatic cancer risk: a meta-analysis. Int. J. Food Sci. Nutr., 2016, 67(7), 744-753.
[http://dx.doi.org/10.1080/09637486.2016.1197892] [PMID: 27356952]
[76]
Murai, T. Cholesterol lowering: role in cancer prevention and treatment. Biol. Chem., 2015, 396(1), 1-11.
[http://dx.doi.org/10.1515/hsz-2014-0194] [PMID: 25205720]
[77]
Sanfilippo, K.M.; Keller, J.; Gage, B.F.; Luo, S.; Wang, T.F.; Moskowitz, G.; Gumbel, J.; Blue, B.; O’Brian, K.; Carson, K.R. Statins Are Associated With Reduced Mortality in Multiple Myeloma. J. Clin. Oncol., 2016, 34(33), 4008-4014.
[http://dx.doi.org/10.1200/JCO.2016.68.3482] [PMID: 27646948]
[78]
Zhuang, L.; Kim, J.; Adam, R.M.; Solomon, K.R.; Freeman, M.R. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J. Clin. Invest., 2005, 115(4), 959-968.
[http://dx.doi.org/10.1172/JCI200519935] [PMID: 15776112]
[79]
Yeganeh, B.; Wiechec, E.; Ande, S.R.; Sharma, P.; Moghadam, A.R.; Post, M.; Freed, D.H.; Hashemi, M.; Shojaei, S.; Zeki, A.A.; Ghavami, S. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol. Ther., 2014, 143(1), 87-110.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.007] [PMID: 24582968]
[80]
Bathaie, S.Z.; Ashrafi, M.; Azizian, M.; Tamanoi, F. Mevalonate pathway and human cancers. Curr. Mol. Pharmacol., 2017, 10(2), 77-85.
[http://dx.doi.org/10.2174/1874467209666160112123205] [PMID: 26758953]
[81]
Gibbs, J.B.; Oliff, A.; Kohl, N.E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell, 1994, 77(2), 175-178.
[http://dx.doi.org/10.1016/0092-8674(94)90308-5] [PMID: 8168127]
[82]
Berndt, N.; Sebti, S.M. Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nat. Protoc., 2011, 6(11), 1775-1791.
[http://dx.doi.org/10.1038/nprot.2011.387] [PMID: 22036881]
[83]
Wei, N.; Mi, M.T.; Zhou, Y. Influences of lovastatin on membrane ion flow and intracellular signaling in breast cancer cells. Cell. Mol. Biol. Lett., 2007, 12(1), 1-15.
[http://dx.doi.org/10.2478/s11658-006-0050-2] [PMID: 17103090]
[84]
Khaidakov, M.; Wang, W.; Khan, J.A.; Kang, B.Y.; Hermonat, P.L.; Mehta, J.L. Statins and angiogenesis: is it about connections? Biochem. Biophys. Res. Commun., 2009, 387(3), 543-547.
[http://dx.doi.org/10.1016/j.bbrc.2009.07.057] [PMID: 19615978]
[85]
Matusewicz, L.; Meissner, J.; Toporkiewicz, M.; Sikorski, A.F. The effect of statins on cancer cells--review. Tumour Biol., 2015, 36(7), 4889-4904.
[http://dx.doi.org/10.1007/s13277-015-3551-7] [PMID: 26002574]
[86]
Chen, C.C.; Liu, T.Y.; Huang, S.P.; Ho, C.T.; Huang, T.C. Differentiation and apoptosis induction by lovastatin and γ-tocotrienol in HL-60 cells via Ras/ERK/NF-κB and Ras/Akt/NF-κB signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase. Cell. Signal., 2015, 27(11), 2182-2190.
[http://dx.doi.org/10.1016/j.cellsig.2015.07.014] [PMID: 26208883]
[87]
Detterbeck, F.C.; Boffa, D.J.; Tanoue, L.T. The new lung cancer staging system. Chest, 2009, 136(1), 260-271.
[http://dx.doi.org/10.1378/chest.08-0978] [PMID: 19584208]
[88]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[89]
Cui, S.; Jiang, L. Factors associated with efficacy of first-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Tumour Biol., 2017, 39(5)1010428317705340
[http://dx.doi.org/10.1177/1010428317705340] [PMID: 28468578]
[90]
Clapéron, A.; Mergey, M.; Nguyen Ho-Bouldoires, T.H.; Vignjevic, D.; Wendum, D.; Chrétien, Y.; Merabtene, F.; Frazao, A.; Paradis, V.; Housset, C.; Guedj, N.; Fouassier, L. EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition. J. Hepatol., 2014, 61(2), 325-332.
[http://dx.doi.org/10.1016/j.jhep.2014.03.033] [PMID: 24704591]
[91]
Nakajima, Y.; Takagi, H.; Kakizaki, S.; Horiguchi, N.; Sato, K.; Sunaga, N.; Mori, M. Gefitinib and gemcitabine coordinately inhibited the proliferation of cholangiocarcinoma cells. Anticancer Res., 2012, 32(12), 5251-5262.
[PMID: 23225424]
[92]
Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet, 2014, 383(9935), 2168-2179.
[http://dx.doi.org/10.1016/S0140-6736(13)61903-0] [PMID: 24581682]
[93]
Pahan, K.; Sheikh, F.G.; Namboodiri, A.M.; Singh, I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J. Clin. Invest., 1997, 100(11), 2671-2679.
[http://dx.doi.org/10.1172/JCI119812] [PMID: 9389730]
[94]
Daher, A.; de Groot, J. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model. Exp. Neurol., 2018, 299(Pt B), 281-288.
[http://dx.doi.org/10.1016/j.expneurol.2017.09.006] [PMID: 28923369]
[95]
Smith, J.S.; Tachibana, I.; Passe, S.M.; Huntley, B.K.; Borell, T.J.; Iturria, N.; O’Fallon, J.R.; Schaefer, P.L.; Scheithauer, B.W.; James, C.D.; Buckner, J.C.; Jenkins, R.B. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J. Natl. Cancer Inst., 2001, 93(16), 1246-1256.
[http://dx.doi.org/10.1093/jnci/93.16.1246] [PMID: 11504770]
[96]
Bianco, R.; Shin, I.; Ritter, C.A.; Yakes, F.M.; Basso, A.; Rosen, N.; Tsurutani, J.; Dennis, P.A.; Mills, G.B.; Arteaga, C.L. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene, 2003, 22(18), 2812-2822.
[http://dx.doi.org/10.1038/sj.onc.1206388] [PMID: 12743604]
[97]
Kuijlen, J.M.; Bremer, E.; Mooij, J.J.; den Dunnen, W.F.; Helfrich, W. Review: on TRAIL for malignant glioma therapy? Neuropathol. Appl. Neurobiol., 2010, 36(3), 168-182.
[http://dx.doi.org/10.1111/j.1365-2990.2010.01069.x] [PMID: 20102513]
[98]
Nakanishi, M.; Goldstein, J.L.; Brown, M.S. Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J. Biol. Chem., 1988, 263(18), 8929-8937.
[PMID: 3379053]
[99]
Mo, H.; Elson, C.E. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. (Maywood), 2004, 229(7), 567-585.
[http://dx.doi.org/10.1177/153537020422900701] [PMID: 15229351]
[100]
Fernandes, N.V.; Guntipalli, P.K.; Mo, H. d-δ-Tocotrienol-mediated cell cycle arrest and apoptosis in human melanoma cells. Anticancer Res., 2010, 30(12), 4937-4944.
[PMID: 21187473]
[101]
Hussein, D.; Mo, H. d-δ-Tocotrienol-mediated suppression of the proliferation of human PANC-1, MIA PaCa-2, and BxPC-3 pancreatic carcinoma cells. Pancreas, 2009, 38(4), e124-e136.
[http://dx.doi.org/10.1097/MPA.0b013e3181a20f9c] [PMID: 19346993]
[102]
Iliskovic, N.; Li, T.; Khaper, N.; Palace, V.; Singal, P.K. Modulation of adriamycin-induced changes in serum free fatty acids, albumin and cardiac oxidative stress. Mol. Cell. Biochem., 1998, 188(1-2), 161-166.
[http://dx.doi.org/10.1023/A:1006845120287] [PMID: 9823021]
[103]
Zhong, W. Systematic review of decision aids for the management of men with localized prostate cancer. Urology, 2018, 114, 1-7.
[http://dx.doi.org/10.1016/j.urology.2017.10.022] [PMID: 29101005]
[104]
Donovan, J.L.; Hamdy, F.C.; Lane, J.A.; Mason, M.; Metcalfe, C.; Walsh, E.; Blazeby, J.M.; Peters, T.J.; Holding, P.; Bonnington, S.; Lennon, T.; Bradshaw, L.; Cooper, D.; Herbert, P.; Howson, J.; Jones, A.; Lyons, N.; Salter, E.; Thompson, P.; Tidball, S.; Blaikie, J.; Gray, C.; Bollina, P.; Catto, J.; Doble, A.; Doherty, A.; Gillatt, D.; Kockelbergh, R.; Kynaston, H.; Paul, A.; Powell, P.; Prescott, S.; Rosario, D.J.; Rowe, E.; Davis, M.; Turner, E.L.; Martin, R.M.; Neal, D.E. Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N. Engl. J. Med., 2016, 375(15), 1425-1437.
[http://dx.doi.org/10.1056/NEJMoa1606221] [PMID: 27626365]
[105]
Ho, B.Y.; Pan, T.M. The Monascus metabolite monacolin K reduces tumor progression and metastasis of Lewis lung carcinoma cells. J. Agric. Food Chem., 2009, 57(18), 8258-8265.
[http://dx.doi.org/10.1021/jf901619w] [PMID: 19754167]
[106]
Hsu, L.C.; Hsu, Y.W.; Liang, Y.H.; Kuo, Y.H.; Pan, T.M. Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone A from monascus purpureus NTU 568. J. Agric. Food Chem., 2011, 59(4), 1124-1130.
[http://dx.doi.org/10.1021/jf103652n] [PMID: 21261255]
[107]
Simonini, G.; Pignone, A.; Generini, S.; Falcini, F.; Cerinic, M.M. Emerging potentials for an antioxidant therapy as a new approach to the treatment of systemic sclerosis. Toxicology, 2000, 155(1-3), 1-15.
[http://dx.doi.org/10.1016/S0300-483X(00)00272-9] [PMID: 11154792]
[108]
Ciurleo, R.; Bramanti, P.; Marino, S. Role of statins in the treatment of multiple sclerosis. Pharmacol. Res., 2014, 87, 133-143.
[http://dx.doi.org/10.1016/j.phrs.2014.03.004] [PMID: 24657241]
[109]
Ulivieri, C.; Baldari, C.T. Statins: from cholesterol-lowering drugs to novel immunomodulators for the treatment of Th17-mediated autoimmune diseases. Pharmacol. Res., 2014, 88, 41-52.
[http://dx.doi.org/10.1016/j.phrs.2014.03.001] [PMID: 24657239]
[110]
Zhang, F.L.; Casey, P.J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem., 1996, 65, 241-269.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.001325] [PMID: 8811180]
[111]
Bartosik-Psujek, H.; Tabarkiewicz, J.; Pocinska, K.; Radej, S.; Stelmasiak, Z.; Rolinski, J. Immunomodulatory effects of IFN-beta and lovastatin on immunophenotype of monocyte-derived dendritic cells in multiple sclerosis. Arch. Immunol. Ther. Exp. (Warsz.), 2010, 58(4), 313-319.
[http://dx.doi.org/10.1007/s00005-010-0084-z] [PMID: 20526818]
[112]
Giri, S.; Nath, N.; Smith, B.; Viollet, B.; Singh, A.K.; Singh, I. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J. Neurosci., 2004, 24(2), 479-487.
[http://dx.doi.org/10.1523/JNEUROSCI.4288-03.2004] [PMID: 14724246]
[113]
Negrotto, L.; Farez, M.F.; Correale, J. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol., 2016, 73(5), 520-528.
[http://dx.doi.org/10.1001/jamaneurol.2015.4807] [PMID: 26953870]
[114]
Sun, Y.; Tian, T.; Gao, J.; Liu, X.; Hou, H.; Cao, R.; Li, B.; Quan, M.; Guo, L. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J. Neuroimmunol., 2016, 292, 58-67.
[http://dx.doi.org/10.1016/j.jneuroim.2016.01.014] [PMID: 26943960]
[115]
Chan, K.M.; Gordon, T.; Zochodne, D.W.; Power, H.A. Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets. Exp. Neurol., 2014, 261, 826-835.
[http://dx.doi.org/10.1016/j.expneurol.2014.09.006] [PMID: 25220611]
[116]
Pearse, D.D.; Pereira, F.C.; Marcillo, A.E.; Bates, M.L.; Berrocal, Y.A.; Filbin, M.T.; Bunge, M.B. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med., 2004, 10(6), 610-616.
[http://dx.doi.org/10.1038/nm1056] [PMID: 15156204]
[117]
Zhu, J.; Mix, E.; Winblad, B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Rev., 2001, 7(4), 387-398.
[http://dx.doi.org/10.1111/j.1527-3458.2001.tb00206.x] [PMID: 11830756]
[118]
Masuda, D.; Yamashita, S. Postprandial hyperlipidemia and remnant lipoproteins. J. Atheroscler. Thromb., 2017, 24(2), 95-109.
[http://dx.doi.org/10.5551/jat.RV16003] [PMID: 27829582]
[119]
Hohenstein, B. Lipoprotein(a) in nephrological patients. Clin. Res. Cardiol. Suppl., 2017, 12(Suppl. 1), 27-30.
[http://dx.doi.org/10.1007/s11789-017-0086-z] [PMID: 28181057]
[120]
Dallinga-Thie, G.M.; Kroon, J.; Borén, J.; Chapman, M.J. Triglyceride-rich lipoproteins and remnants: targets for therapy? Curr. Cardiol. Rep., 2016, 18(7), 67.
[http://dx.doi.org/10.1007/s11886-016-0745-6] [PMID: 27216847]
[121]
Becker, D.J. Red yeast rice for dyslipidemia in statin-intolerant patients: A randomized trial. Ann Intern Med,, 2009, 150, (12), 830-9, W147-9..
[http://dx.doi.org/10.7326/0003-4819-150-12-200906160-00006]
[122]
Halbert, S.C.; French, B.; Gordon, R.Y.; Farrar, J.T.; Schmitz, K.; Morris, P.B.; Thompson, P.D.; Rader, D.J.; Becker, D.J. Tolerability of red yeast rice (2,400 mg twice daily) versus pravastatin (20 mg twice daily) in patients with previous statin intolerance. Am. J. Cardiol., 2010, 105(2), 198-204.
[http://dx.doi.org/10.1016/j.amjcard.2009.08.672] [PMID: 20102918]
[123]
Roy, A.; Pahan, K. Gemfibrozil, stretching arms beyond lipid lowering. Immunopharmacol. Immunotoxicol., 2009, 31(3), 339-351.
[http://dx.doi.org/10.1080/08923970902785253] [PMID: 19694602]
[124]
Hossain, M.A.; Tsujita, M.; Gonzalez, F.J.; Yokoyama, S. Effects of fibrate drugs on expression of ABCA1 and HDL biogenesis in hepatocytes. J. Cardiovasc. Pharmacol., 2008, 51(3), 258-266.
[http://dx.doi.org/10.1097/FJC.0b013e3181624b22] [PMID: 18356690]
[125]
Jana, M.; Jana, A.; Liu, X.; Ghosh, S.; Pahan, K. Involvement of phosphatidylinositol 3-kinase-mediated up-regulation of I kappa B alpha in anti-inflammatory effect of gemfibrozil in microglia. J. Immunol., 2007, 179(6), 4142-4152.
[http://dx.doi.org/10.4049/jimmunol.179.6.4142] [PMID: 17785853]
[126]
Jin, F.Y.; Kamanna, V.S.; Chuang, M.Y.; Morgan, K.; Kashyap, M.L. Gemfibrozil stimulates apolipoprotein A-I synthesis and secretion by stabilization of mRNA transcripts in human hepatoblastoma cell line (Hep G2). Arterioscler. Thromb. Vasc. Biol., 1996, 16(8), 1052-1062.
[http://dx.doi.org/10.1161/01.ATV.16.8.1052] [PMID: 8696946]
[127]
Saku, K.; Gartside, P.S.; Hynd, B.A.; Kashyap, M.L. Mechanism of action of gemfibrozil on lipoprotein metabolism. J. Clin. Invest., 1985, 75(5), 1702-1712.
[http://dx.doi.org/10.1172/JCI111879] [PMID: 3923042]
[128]
Zaki, N.F.; Sulaiman, A.S.; Gillani, W.S. Clinical evaluation of Dyslipidemia among type II diabetic patients at Public hospital Penang, Malaysia. Int. Arch. Med., 2010, 3(1), 34.
[http://dx.doi.org/10.1186/1755-7682-3-34] [PMID: 21092333]
[129]
Zeman, M.; Vecka, M.; Perlík, F.; Staňková, B.; Hromádka, R.; Tvrzická, E.; Širc, J.; Hrib, J.; Žák, A. Pleiotropic effects of niacin: Current possibilities for its clinical use. Acta Pharm., 2016, 66(4), 449-469.
[http://dx.doi.org/10.1515/acph-2016-0043] [PMID: 27749252]
[130]
Chai, J.T.; Digby, J.E.; Choudhury, R.P. GPR109A and vascular inflammation. Curr. Atheroscler. Rep., 2013, 15(5), 325.
[http://dx.doi.org/10.1007/s11883-013-0325-9] [PMID: 23526298]
[131]
Dayer-Berenson, L.; Finckenor, M. Expanded colesevelam administration options with oral suspension formulation for patients with diabetes and hypercholesterolemia. Postgrad. Med., 2014, 126(3), 126-134.
[http://dx.doi.org/10.3810/pgm.2014.05.2762] [PMID: 24918798]
[132]
Cowie, M.R. Simultaneous treatment of hypertension and dyslipidaemia may help to reduce overall cardiovascular risk: focus on amlodipine/atorvastatin single-pill therapy. Int. J. Clin. Pract., 2005, 59(7), 839-846.
[http://dx.doi.org/10.1111/j.1368-5031.2005.00601.x] [PMID: 15963213]
[133]
Derosa, G.; Maffioli, P. Effects of amlodipine plus atorvastatin association in hypertensive hypercholesterolemic patients. Expert Rev. Cardiovasc. Ther., 2010, 8(6), 835-843.
[http://dx.doi.org/10.1586/erc.10.51] [PMID: 20528641]
[134]
Farkhondeh, T.; Samarghandian, S.; Borji, A. An overview on cardioprotective and anti-diabetic effects of thymoquinone. Asian Pac. J. Trop. Med., 2017, 10(9), 849-854.
[http://dx.doi.org/10.1016/j.apjtm.2017.08.020] [PMID: 29080612]
[135]
Panahi, Y.; Ahmadi, Y.; Teymouri, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J. Cell. Physiol., 2018, 233(1), 141-152.
[http://dx.doi.org/10.1002/jcp.25756] [PMID: 28012169]
[136]
Johnson-Arbor, K.; Dubey, R. Doxorubicin, in StatPearls In: Treasure Island (FL); , 2017.
[137]
Renu, K. v G, A.; P B, T.P.; Arunachalam, S. Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. Eur. J. Pharmacol., 2018, 818, 241-253.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.043] [PMID: 29074412]
[138]
Arunachalam, S.; Tirupathi Pichiah, P.B.; Achiraman, S. Doxorubicin treatment inhibits PPARγ and may induce lipotoxicity by mimicking a type 2 diabetes-like condition in rodent models. FEBS Lett., 2013, 587(2), 105-110.
[http://dx.doi.org/10.1016/j.febslet.2012.11.019] [PMID: 23219922]
[139]
Arunachalam, S.; Kim, S.Y.; Kim, M.S.; Yi, H.K.; Yun, B.S.; Lee, D.Y.; Hwang, P.H. Adriamycin inhibits adipogenesis through the modulation of PPARγ and restoration of adriamycin-mediated inhibition of adipogenesis by PPARγ over-expression. Toxicol. Mech. Methods, 2012, 22(7), 540-546.
[http://dx.doi.org/10.3109/15376516.2012.692110] [PMID: 22563975]
[140]
Angsutararux, P.; Luanpitpong, S.; Issaragrisil, S. Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative Stress. Oxid. Med. Cell. Longev., 2015.2015795602
[http://dx.doi.org/10.1155/2015/795602] [PMID: 26491536]
[141]
Wang, H.L.; Cui, X.H.; Yu, H.L.; Wu, R.; Xu, X.; Gao, J.P. Synergistic effects of polydatin and vitamin C in inhibiting cardiotoxicity induced by doxorubicin in rats. Fundam. Clin. Pharmacol., 2017, 31(3), 280-291.
[http://dx.doi.org/10.1111/fcp.12258] [PMID: 27891661]
[142]
Iliskovic, N.; Singal, P.K. Lipid lowering: an important factor in preventing adriamycin-induced heart failure. Am. J. Pathol., 1997, 150(2), 727-734.
[PMID: 9033285]
[143]
Zhou, X.; Li, Y.; Shi, X.; Ma, C. An overview on therapeutics attenuating amyloid β level in Alzheimer’s disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels. Am. J. Transl. Res., 2016, 8(2), 246-269.
[PMID: 27158324]
[144]
Gupta, A.; Goyal, R. Amyloid beta plaque: a culprit for neurodegeneration. Acta Neurol. Belg., 2016, 116(4), 445-450.
[http://dx.doi.org/10.1007/s13760-016-0639-9] [PMID: 27118573]
[145]
Area-Gomez, E.; Schon, E.A. On the pathogenesis of Alzheimer’s Disease: The MAM hypothesis. FASEB J., 2017, 31(3), 864-867.
[http://dx.doi.org/10.1096/fj.201601309] [PMID: 28246299]
[146]
Lockhart, C.; Klimov, D.K. Cholesterol changes the mechanisms of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model., 2017, 57(10), 2554-2565.
[http://dx.doi.org/10.1021/acs.jcim.7b00431] [PMID: 28910085]
[147]
Summers, K.L.; Fimognari, N.; Hollings, A.; Kiernan, M.; Lam, V.; Tidy, R.J.; Paterson, D.; Tobin, M.J.; Takechi, R.; George, G.N.; Pickering, I.J.; Mamo, J.C.; Harris, H.H.; Hackett, M.J. A Multimodal spectroscopic imaging method to characterize the metal and macromolecular content of proteinaceous aggregates (“amyloid plaques”). Biochemistry, 2017, 56(32), 4107-4116.
[http://dx.doi.org/10.1021/acs.biochem.7b00262] [PMID: 28718623]
[148]
Granzotto, A.; Suwalsky, M.; Zatta, P. Physiological cholesterol concentration is a neuroprotective factor against β-amyloid and β-amyloid-metal complexes toxicity. J. Inorg. Biochem., 2011, 105(8), 1066-1072.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.013] [PMID: 21726769]
[149]
Lee, C.L. Monascus-fermented monascin and ankaflavin improve the memory and learning ability in amyloid beta-protein intracerebroventricular-infused rat via the suppression of Alzheimer’s disease risk factors. J. Funct. Foods, 2015, 18, 387-399.
[http://dx.doi.org/10.1016/j.jff.2015.08.002]
[150]
Asai, M.; Iwata, N.; Tomita, T.; Iwatsubo, T.; Ishiura, S.; Saido, T.C.; Maruyama, K. Efficient four-drug cocktail therapy targeting amyloid-β peptide for Alzheimer’s disease. J. Neurosci. Res., 2010, 88(16), 3588-3597.
[http://dx.doi.org/10.1002/jnr.22503] [PMID: 20890992]
[151]
Schrott, H.G.; Stein, E.A.; Dujovne, C.A.; Davidson, M.H.; Goris, G.B.; Oliphant, T.H.; Phillips, J.C.; Shawaryn, G.G. Enhanced low-density lipoprotein cholesterol reduction and cost-effectiveness by low-dose colestipol plus lovastatin combination therapy. Am. J. Cardiol., 1995, 75(1), 34-39.
[http://dx.doi.org/10.1016/S0002-9149(99)80523-2] [PMID: 7801861]
[152]
Le Lay, S.; Simard, G.; Martinez, M.C.; Andriantsitohaina, R. Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid. Med. Cell. Longev., 2014.2014908539
[http://dx.doi.org/10.1155/2014/908539] [PMID: 25143800]
[153]
Tunsophon, S.; Chootip, K. Comparative effects of piperine and simvastatin in fat accumulation and antioxidative status in high fat-induced hyperlipidemic rats. Can. J. Physiol. Pharmacol., 2016, 94(12), 1344-1348.
[http://dx.doi.org/10.1139/cjpp-2016-0193] [PMID: 27718606]
[154]
Kesh, S.B.; Sikder, K.; Manna, K.; Das, D.K.; Khan, A.; Das, N.; Dey, S. Promising role of ferulic acid, atorvastatin and their combination in ameliorating high fat diet-induced stress in mice. Life Sci., 2013, 92(17-19), 938-949.
[http://dx.doi.org/10.1016/j.lfs.2013.03.015] [PMID: 23567805]
[155]
Lee, C.L.; Pan, T.M. Red mold fermented products and Alzheimer’s disease: a review. Appl. Microbiol. Biotechnol., 2011, 91(3), 461-469.
[http://dx.doi.org/10.1007/s00253-011-3413-1] [PMID: 21687963]
[156]
Dujovne, C.A. Red Yeast Rice Preparations: Are They Suitable Substitutions for Statins? Am. J. Med., 2017, 130(10), 1148-1150.
[http://dx.doi.org/10.1016/j.amjmed.2017.05.013] [PMID: 28601545]
[157]
Venhuis, B.J.; van Hunsel, F.; van de Koppel, S.; Keizers, P.H.; Jeurissen, S.M.; De Kaste, D. Pharmacologically effective red yeast rice preparations marketed as dietary supplements illustrated by a case report. Drug Test. Anal., 2016, 8(3-4), 315-318.
[http://dx.doi.org/10.1002/dta.1929] [PMID: 26810781]
[158]
Gayathri, L.; Dhivya, R.; Dhanasekaran, D.; Periasamy, V.S.; Alshatwi, A.A.; Akbarsha, M.A. Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2 cell. Food Chem. Toxicol., 2015, 83, 151-163.
[http://dx.doi.org/10.1016/j.fct.2015.06.009] [PMID: 26111808]
[159]
Chen, C.C.; Chan, W.H. Inhibition of citrinin-induced apoptotic biochemical signaling in human hepatoma G2 cells by resveratrol. Int. J. Mol. Sci., 2009, 10(8), 3338-3357.
[http://dx.doi.org/10.3390/ijms10083338] [PMID: 20111678]
[160]
Hsu, L.C.; Hsu, Y.W.; Liang, Y.H.; Lin, Z.H.; Kuo, Y.H.; Pan, T.M. Protective effect of deferricoprogen isolated from Monascus purpureus NTU 568 on citrinin-induced apoptosis in HEK-293 cells. J. Agric. Food Chem., 2012, 60(32), 7880-7885.
[http://dx.doi.org/10.1021/jf301889q] [PMID: 22835031]
[161]
Lee, C.L.; Wen, J.Y.; Hsu, Y.W.; Pan, T.M. Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J. Agric. Food Chem., 2013, 61(7), 1493-1500.
[http://dx.doi.org/10.1021/jf304015z] [PMID: 23360447]
[162]
Yang, C.W.; Mousa, S.A. The effect of red yeast rice (Monascus purpureus) in dyslipidemia and other disorders. Complement. Ther. Med., 2012, 20(6), 466-474.
[http://dx.doi.org/10.1016/j.ctim.2012.07.004] [PMID: 23131380]
[163]
Gordon, R.Y.; Cooperman, T.; Obermeyer, W.; Becker, D.J. Marked variability of monacolin levels in commercial red yeast rice products: buyer beware! Arch. Intern. Med., 2010, 170(19), 1722-1727.
[http://dx.doi.org/10.1001/archinternmed.2010.382] [PMID: 20975018]
[164]
EFSA Panel on Dietetic Products.Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to monacolin K from red yeast rice and maintenance of normal blood LDL-cholesterol concentrations (ID 1648, 1700) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J., 2011, 9(7), 2304.
[http://dx.doi.org/10.2903/j.efsa.2011.2304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy