[1]
Fay, N.; Panté, N. Nuclear entry of DNA viruses. Front. Microbiol., 2015, 13(6), 467.
[2]
Hiscox, J.A. RNA viruses: hijacking the dynamic nucleolus. Nat. Rev. Microbiol., 2007, 5(2), 119-127.
[3]
Rawlinson, S.M.; Moseley, G.W. The nucleolar interface of RNA viruses. Cell. Microbiol., 2015, 17(8), 1108-1120.
[4]
Salvetti, A.; Greco, A. Viruses and the nucleolus: the fatal attraction. Biochim. Biophys. Acta, 2014, 1842(6), 840-847.
[5]
Hennig, T.; O’Hare, P. Viruses and the nuclear envelope. Curr. Opin. Cell Biol., 2015, 34, 113-121.
[6]
Saphire, A.C.; Guan, T.; Schirmer, E.C.; Nemerow, G.R.; Gerace, L. Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J. Biol. Chem., 2000, 275(6), 4298-4304.
[7]
Trotman, L.C.; Mosberger, N.; Fornerod, M.; Stidwill, R.P.; Greber, U.F. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat. Cell Biol., 2001, 3(12), 1092-1100.
[8]
Güttler, T.; Madl, T.; Neumann, P.; Deichsel, D.; Corsini, L.; Monecke, T.; Ficner, R.; Sattler, M.; Görlich, D. NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat. Struct. Mol. Biol., 2010, 17(11), 1367-1376.
[9]
Sagou, K.; Uema, M.; Kawaguchi, Y. Nucleolin is required for efficient nuclear egress of herpes simplex virus type 1 nucleocapsids. J. Virol., 2010, 84(4), 2110-2121.
[10]
Greco, A.; Arata, L.; Soler, E.; Gaume, X.; Couté, Y.; Hacot, S.; Callé, A.; Monier, K.; Epstein, A.L.; Sanchez, J.C.; Bouvet, P.; Diaz, J.J. Nucleolin interacts with US11 protein of herpes simplex virus 1 and is involved in its trafficking. J. Virol., 2012, 86(3), 1449-1457.
[11]
Okuwaki, M. The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein. J. Biochem., 2008, 143(4), 441-448.
[12]
Lindström, M.S. NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochemistry Research International, 2011, , 2011; p. ID 195209, 16 pages.
[13]
Fankhauser, C.; Izaurralde, E.; Adachi, Y.; Wingfield, P.; Laemmli, U.K. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol. Cell. Biol., 1991, 11(5), 2567-2575.
[14]
Hindley, C.E.; Davidson, A.D.; Matthews, D.A. Relationship between adenovirus DNA replication proteins and nucleolar proteins B23.1 and B23.2. J. Gen. Virol., 2007, 88(Pt 12), 3244-3248.
[15]
Lawrence, F.J.; McStay, B.; Matthews, D.A. Nucleolar protein upstream binding factor is sequestered into adenovirus DNA replication centres during infection without affecting RNA polymerase I location or ablating rRNA synthesis. J. Cell Sci., 2006, 119(Pt 12), 2621-2631.
[16]
Miron, M.J.; Gallouzi, I.E.; Lavoie, J.N.; Branton, P.E. Nuclear localization of the adenovirus E4orf4 protein is mediated through an arginine-rich motif and correlates with cell death. Oncogene, 2004, 23(45), 7458-7468.
[17]
Lee, T.W.; Blair, G.E.; Matthews, D.A. Adenovirus core protein VII contains distinct sequences that mediate targeting to the nucleus and nucleolus, and colocalization with human chromosomes. J. Gen. Virol., 2003, 84(Pt 12), 3423-3428.
[18]
Matthews, D.A. Adenovirus protein V induces redistribution of nucleolin and B23 from nucleolus to cytoplasm. J. Virol., 2001, 75(2), 1031-1038.
[19]
Lutz, P.; Puvion-Dutilleul, F.; Lutz, Y.; Kedinger, C. Nucleoplasmic and nucleolar distribution of the adenovirus IVa2 gene product. J. Virol., 1996, 70(6), 3449-3460.
[20]
Miron, M.J.; Blanchette, P.; Groitl, P.; Dallaire, F.; Teodoro, J.G.; Li, S.; Dobner, T.; Branton, P.E. Localization and importance of the adenovirus E4orf4 protein during lytic infection. J. Virol., 2009, 83(4), 1689-1699.
[21]
Puvion-Dutilleul, F.; Christensen, M.E. Alterations of fibrillarin distribution and nucleolar ultrastructure induced by adenovirus infection. Eur. J. Cell Biol., 1993, 61(1), 168-176.
[22]
Rodrigues, S.H.; Silva, N.P.; Delício, L.R.; Granato, C.; Andrade, L.E. The behavior of the coiled body in cells infected with adenovirus in vitro. Mol. Biol. Rep., 1996, 23(3-4), 183-189.
[23]
Samad, M.A.; Okuwaki, M.; Haruki, H.; Nagata, K. Physical and functional interaction between a nucleolar protein nucleophosmin/B23 and adenovirus basic core proteins. FEBS Lett., 2007, 581(17), 3283-3288.
[24]
Samad, M.A.; Komatsu, T.; Okuwaki, M.; Nagata, K. B23/nucleophosmin is involved in regulation of adenovirus chromatin structure at late infection stages, but not in virus replication and transcription. J. Gen. Virol., 2012, 93(Pt 6), 1328-1338.
[25]
Gadad, S.S.; Rajan, R.E.; Senapati, P.; Chatterjee, S.; Shandilya, J.; Dash, P.K.; Ranga, U.; Kundu, T.K. HIV-1 infection induces acetylation of NPM1 that facilitates Tat localization and enhances viral transactivation. J. Mol. Biol., 2011, 410(5), 997-1007.
[26]
Lymberopoulos, M.H.; Bourget, A.; Ben Abdeljelil, N.; Pearson, A. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology, 2011, 412(2), 341-348.
[27]
Mai, R.T.; Yeh, T.S.; Kao, C.F.; Sun, S.K.; Huang, H.H.; Wu, Lee Y.H. Hepatitis C virus core protein recruits nucleolar phosphoprotein B23 and coactivator p300 to relieve the repression effect of transcriptional factor YY1 on B23 gene expression. Oncogene, 2006, 25(3), 448-462.
[28]
Ahuja, R.; Kapoor, N.R.; Kumar, V. The HBx oncoprotein of hepatitis B virus engages nucleophosmin to promote rDNA transcription and cellular proliferation. Biochim. Biophys. Acta, 2015, 1853, 1783-1795.
[29]
Abraham, R.; Mudaliar, P.; Jaleel, A.; Srikanth, J.; Sreekumar, E. High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J. Proteomics, 2015, 120, 126-141.
[30]
Yun, J.P.; Chew, E.C.; Liew, C.T.; Chan, J.Y.H.; Jin, M.L.; Ding, M.X.; Fai, Y.H.; Li, H.K.R.; Liang, X.M.; Wu, Q.L. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix. J. Cell. Biochem., 2003, 90(6), 1140-1148.
[31]
Wang, D.; Umekawa, H.; Olson, M.O. Expression and subcellular locations of two forms of nucleolar protein B23 in rat tissues and cells. Cell. Mol. Biol. Res., 1993, 39(1), 33-42.
[32]
Hingorani, K.; Szebeni, A.; Olson, M.O. Mapping the functional domains of nucleolar protein B23. J. Biol. Chem., 2000, 275(32), 24451-24457.
[33]
Lee, H.H.; Kim, H.S.; Kang, J.Y.; Lee, B.I.; Ha, J.Y.; Yoon, H.J.; Lim, S.O.; Jung, G.; Suh, S.W. Crystal structure of human nucleophosmin-core reveals plasticity of the pentamer-pentamer interface. Proteins, 2007, 69(3), 672-678.
[34]
Szebeni, A.; Herrera, J.E.; Olson, M.O.J. Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry, 1995, 34(25), 8037-8042.
[35]
Savkur, R.S.; Olson, M.O. Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res., 1998, 26(19), 4508-4515.
[36]
Yu, Y.; Maggi, L.B., Jr; Brady, S.N.; Apicelli, A.J.; Dai, M.S.; Lu, H.; Weber, J.D. Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol. Cell. Biol., 2006, 26(10), 3798-3809.
[37]
Murano, K.; Okuwaki, M.; Hisaoka, M.; Nagata, K. Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol. Cell. Biol., 2008, 28(10), 3114-3126.
[38]
Okuwaki, M.; Matsumoto, K.; Tsujimoto, M.; Nagata, K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett., 2001, 506(3), 272-276.
[39]
Wu, M.H.; Chang, J.H.; Yung, B.Y. Resistance to UV-induced cell-killing in nucleophosmin/B23 over-expressed NIH 3T3 fibroblasts: enhancement of DNA repair and up-regulation of PCNA in association with nucleophosmin/B23 over-expression. Carcinogenesis, 2002, 23(1), 93-100.
[40]
Okuda, M. The role of nucleophosmin in centrosome duplication. Oncogene, 2002, 21(40), 6170-6174.
[41]
Grisendi, S.; Mecucci, C.; Falini, B.; Pandolfi, P.P. Nucleophosmin and cancer. Nat. Rev. Cancer, 2006, 6(7), 493-505.
[42]
Kim, W.; Oe Lim, S.; Kim, J.S.; Ryu, Y.H.; Byeon, J.Y.; Kim, H.J.; Kim, Y.I.; Heo, J.S.; Park, Y.M.; Jung, G. Comparison of proteome between hepatitis B virus- and hepatitis C virus-associated hepatocellular carcinoma. Clin. Cancer Res., 2003, 9(15), 5493-5500.
[43]
Jeong, H.; Cho, M.H.; Park, S.G.; Jung, G. Interaction between nucleophosmin and HBV core protein increases HBV capsid assembly. FEBS Lett., 2014, 588(6), 851-858.
[44]
Liu, C.D.; Chen, Y.L.; Min, Y.L.; Zhao, B.; Cheng, C.P.; Kang, M.S.; Chiu, S.J.; Kieff, E.; Peng, C.W. The nuclear chaperone nucleophosmin escorts an Epstein-Barr Virus nuclear antigen to establish transcriptional cascades for latent infection in human B cells. PLoS Pathog., 2012, 8(12), e1003084.
[45]
Day, P.M.; Thompson, C.D.; Pang, Y.Y.; Lowy, D.R.; Schiller, J.T. Involvement of nucleophosmin (NPM1/B23/NPM1) in assembly of infectious HPV16 capsids. Papillomavirus Res., 2015, 1, 74-89.
[46]
Nouri, K.; Moll, J.M.; Milroy, L.G.; Hain, A.; Dvorsky, R.; Amin, E.; Lenders, M.; Nagel-Steger, L.; Howe, S.; Smits, S.H.J.; Hengel, H.; Schmitt, L.; Münk, C.; Brunsveld, L.; Ahmadian, M.R. Biophysical Characterization of Nucleophosmin Interactions with Human Immunodeficiency Virus Rev and Herpes Simplex Virus US11. PLoS One, 2015, 10(12), e0143634.
[47]
Sung, M.T.; Cao, T.M.; Coleman, R.T.; Budelier, K.A. Gene and protein sequences of adenovirus protein VII, a hybrid basic chromosomal protein. Proc. Natl. Acad. Sci. USA, 1983, 80(10), 2902-2906.
[48]
Daniell, E.; Groff, D.E.; Fedor, M.J. Adenovirus chromatin structure at different stages of infection. Mol. Cell. Biol., 1981, 1(12), 1094-1105.
[49]
Fankhauser, C.; Izaurralde, E.; Adachi, Y.; Wingfield, P.; Laemmli, U.K. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol. Cell. Biol., 1991, 11(5), 2567-2575.
[50]
Miyazaki, Y.; Nosaka, T.; Hatanaka, M. The post-transcriptional regulator Rev of HIV: implications for its interaction with the nucleolar protein B23. Biochimie, 1996, 78(11-12), 1081-1086.
[51]
Hope, T.J. The ins and outs of HIV Rev. Arch. Biochem. Biophys., 1999, 365(2), 186-191.
[52]
Cao, Y.; Liu, X.; De Clercq, E. Cessation of HIV-1 transcription by inhibiting regulatory protein Rev-mediated RNA transport. Curr. HIV Res., 2009, 7(1), 101-108.
[53]
Cochrane, A.W.; Perkins, A.; Rosen, C.A. Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J. Virol., 1990, 64(2), 881-885.
[54]
Malim, M.H.; Böhnlein, S.; Hauber, J.; Cullen, B.R. Functional dissection of the HIV-1 Rev trans-activator--derivation of a trans-dominant repressor of Rev function. Cell, 1989, 58(1), 205-214.
[55]
Edgcomb, S.P.; Aschrafi, A.; Kompfner, E.; Williamson, J.R.; Gerace, L.; Hennig, M. Protein structure and oligomerization are important for the formation of export-competent HIV-1 Rev-RRE complexes. Protein Sci., 2008, 17(3), 420-430.
[56]
Zapp, M.L.; Hope, T.J.; Parslow, T.G.; Green, M.R. Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proc. Natl. Acad. Sci. USA, 1991, 88(17), 7734-7738.
[57]
McLaren, M.; Marsh, K.; Cochrane, A. Modulating HIV-1 RNA processing and utilization. Front. Biosci., 2008, 13, 5693-5707.
[58]
Williams, C.A.; Lever, A.M.L.; Abbink, T.E.M. Cellular
Factors Involved in HIV-1 RNA
transport. Rescent Advances in Human Retroviruses:
Principles of Replication and Pathogenesis, 2010, 171-210.
[59]
Szebeni, A.; Olson, M.O. Nucleolar protein B23 has molecular chaperone activities. Protein Sci., 1999, 8(4), 905-912.
[60]
DiMattia, M.A.; Watts, N.R.; Stahl, S.J.; Rader, C.; Wingfield, P.T.; Stuart, D.I.; Steven, A.C.; Grimes, J.M. Implications of the HIV-1 Rev dimer structure at 3.2 A resolution for multimeric binding to the Rev response element. Proc. Natl. Acad. Sci. USA, 2010, 107(13), 5810-5814.
[61]
Marasco, W.A.; Szilvay, A.M.; Kalland, K.H.; Helland, D.G.; Reyes, H.M.; Walter, R.J. Spatial association of HIV-1 tat protein and the nucleolar transport protein B23 in stably transfected Jurkat T-cells. Arch. Virol., 1994, 139(1-2), 133-154.
[62]
Li, Y.P. Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J. Virol., 1997, 71(5), 4098-4102.
[63]
Lymberopoulos, M.H.; Bourget, A.; Ben Abdeljelil, N.; Pearson, A. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology, 2011, 412(2), 341-348.
[64]
Roller, R.J.; Monk, L.L.; Stuart, D.; Roizman, B. Structure and function in the herpes simplex virus 1 RNA-binding protein U(s)11: mapping of the domain required for ribosomal and nucleolar association and RNA binding in vitro. J. Virol., 1996, 70(5), 2842-2851.
[65]
Mitrea, D.M.; Grace, C.R.; Buljan, M.; Yun, M.K.; Pytel, N.J.; Satumba, J.; Nourse, A.; Park, C.G.; Madan, Babu. M.; White, S.W.; Kriwacki, R.W. Structural polymorphism in the N-terminal oligomerization domain of NPM1. Proc. Natl. Acad. Sci. USA, 2014, 111(12), 4466-4471.
[66]
Tellinghuisen, T.L.; Rice, C.M. Interaction between hepatitis C virus proteins and host cell factors. Curr. Opin. Microbiol., 2002, 5(4), 419-427.
[67]
Santolini, E.; Migliaccio, G.; La Monica, N. Biosynthesis and biochemical properties of the hepatitis C virus core protein. J. Virol., 1994, 68(6), 3631-3641.
[68]
Warner, N.; Locarnini, S. Replication of hepatitis B virus.Zakim and Boyer’s Hepatology: A Textbook of Liver Disease., (6th ed. ), 2012.
[69]
Lee, S.J.; Shim, H.Y.; Hsieh, A.; Min, J.Y.; Jung, Gh. Hepatitis B virus core interacts with the host cell nucleolar protein, nucleophosmin 1. J. Microbiol., 2009, 47(6), 746-752.
[70]
Zheng, J.; Schödel, F.; Peterson, D.L. The structure of hepadnaviral core antigens. Identification of free thiols and determination of the disulfide bonding pattern. J. Biol. Chem., 1992, 267(13), 9422-9429.
[71]
Weiner, A.J.; Choo, Q.L.; Wang, K.S.; Govindarajan, S.; Redeker, A.G.; Gerin, J.L.; Houghton, M. A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24 delta and p27 delta. J. Virol., 1988, 62(2), 594-599.
[72]
Chou, H.C.; Hsieh, T.Y.; Sheu, G.T.; Lai, M.M.C. Hepatitis delta antigen mediates the nuclear import of hepatitis delta virus RNA. J. Virol., 1998, 72(5), 3684-3690.
[73]
Lee, C.H.; Chang, S.C.; Chen, C.J.; Chang, M.F. The nucleolin binding activity of hepatitis delta antigen is associated with nucleolus targeting. J. Biol. Chem., 1998, 273(13), 7650-7656.
[74]
Bell, P.; Brazas, R.; Ganem, D.; Maul, G.G. Hepatitis delta virus replication generates complexes of large hepatitis delta antigen and antigenomic RNA that affiliate with and alter nuclear domain 10. J. Virol., 2000, 74(11), 5329-5336.
[75]
Wu, J.C.; Chen, C.L.; Lee, S.D.; Sheen, I.J.; Ting, L.P. Expression and localization of the small and large delta antigens during the replication cycle of hepatitis D virus. Hepatology, 1992, 16(5), 1120-1127.
[76]
Huang, W.H.; Yung, B.Y.; Syu, W.J.; Lee, Y.H. The nucleolar phosphoprotein B23 interacts with hepatitis delta antigens and modulates the hepatitis delta virus RNA replication. J. Biol. Chem., 2001, 276(27), 25166-25175.
[77]
Borer, R.A.; Lehner, C.F.; Eppenberger, H.M.; Nigg, E.A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell, 1989, 56(3), 379-390.
[78]
Zhang, X.X.; Thomis, D.C.; Samuel, C.E. Isolation and characterization of a molecular cDNA clone of a human mRNA from interferon-treated cells encoding nucleolar protein B23, numatrin. Biochem. Biophys. Res. Commun., 1989, 164(1), 176-184.
[79]
Adachi, Y.; Copeland, T.D.; Hatanaka, M.; Oroszlan, S. Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I specifically binds to nucleolar shuttle protein B-23. J. Biol. Chem., 1993, 268(19), 13930-13934.
[80]
Thio, C.L.; Yusof, R.; Abdul-Rahman, P.S.; Karsani, S.A. Differential proteome analysis of chikungunya virus infection on host cells. PLoS One, 2013, 8(4), e61444.
[81]
Issac, T.H.; Tan, E.L.; Chu, J.J. Proteomic profiling of chikungunya virus-infected human muscle cells: reveal the role of cytoskeleton network in CHIKV replication. J. Proteomics, 2014, 108, 445-464.
[82]
Abraham, R.; Mudaliar, P.; Jaleel, A.; Srikanth, J.; Sreekumar, E. High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J. Proteomics, 2015, 120, 126-141.
[83]
Tsuda, Y.; Mori, Y.; Abe, T.; Yamashita, T.; Okamoto, T.; Ichimura, T.; Moriishi, K.; Matsuura, Y. Nucleolar protein B23 interacts with Japanese encephalitis virus core protein and participates in viral replication. Microbiol. Immunol., 2006, 50(3), 225-234.
[84]
Qi, W.; Shakalya, K.; Stejskal, A.; Goldman, A.; Beeck, S.; Cooke, L.; Mahadevan, D. NSC348884, a nucleophosmin inhibitor disrupts oligomer formation and induces apoptosis in human cancer cells. Oncogene, 2008, 27(30), 4210-4220.
[85]
Perera, Y.; Farina, H.G.; Gil, J.; Rodriguez, A.; Benavent, F.; Castellanos, L.; Gómez, R.E.; Acevedo, B.E.; Alonso, D.F.; Perea, S.E. Anticancer peptide CIGB-300 binds to nucleophosmin/B23, impairs its CK2-mediated phosphorylation, and leads to apoptosis through its nucleolar disassembly activity. Mol. Cancer Ther., 2009, 8(5), 1189-1196.
[86]
Arts, E.J.; Hazuda, D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med., 2012, 2(4), a007161.
[87]
Ahmed, A.; Felmlee, D.J. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals. Viruses, 2015, 7(12), 6716-6729.
[88]
Jenwitheesuk, E.; Horst, J.A.; Rivas, K.L.; Van Voorhis, W.C.; Samudrala, R. Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol. Sci., 2008, 29(2), 62-71.
[89]
Liu, Y.; Xie, D.; Han, L.; Bai, H.; Li, F.; Wang, S.; Bo, X. EHFPI: a database and analysis resource of essential host factors for pathogenic infection. Nucleic Acids Res., 2015, 43(Database issue), D946-D955.
[90]
Ott, J.J.; Stevens, G.A.; Groeger, J.; Wiersma, S.T. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine, 2012, 30(12), 2212-2219.
[91]
Gish, R.G.; Given, B.D.; Lai, C.L.; Locarnini, S.A.; Lau, J.Y.; Lewis, D.L.; Schluep, T. Chronic hepatitis B: Virology, natural history, current management and a glimpse at future opportunities. Antiviral Res., 2015, 121, 47-58.
[92]
Ko, C.; Michler, T.; Protzer, U. Novel viral and host targets to cure hepatitis B. Curr. Opin. Virol., 2017, 24, 38-45.
[93]
Block, T.M.; Rawat, S.; Brosgart, C.L. Chronic hepatitis B: A wave of new therapies on the horizon. Antiviral Res., 2015, 121, 69-81.
[94]
Boucle, S.; Bassit, L.; Ehteshami, M.; Schinazi, R.F. Toward Elimination of Hepatitis B Virus Using Novel Drugs, Approaches, and Combined Modalities. Clin. Liver Dis., 2016, 20(4), 737-749.
[95]
Testoni, B.; Durantel, D.; Zoulim, F. Novel targets for hepatitis B virus therapy. Liver Int., 2017, 37(Suppl. 1), 33-39.
[96]
Sanjuán, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci., 2016, 73(23), 4433-4448.
[97]
Zhang, X. Challenges and Opportunities in the Development of Therapeutics for Viral Infectious Diseases in the 21st Century. Virol. Mycol., 2012, 1, e101.
[98]
El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012, 142(6), 1264-1273.e1.
[99]
Zhang, Q.; Cao, G. Genotypes, mutations, and viral load of hepatitis B virus and the risk of hepatocellular carcinoma: HBV properties and hepatocarcinogenesis. Hepat. Mon., 2011, 11(2), 86-91.
[100]
Zhang, J.; Zhao, H.L.; He, J.F.; Li, H.Y. [Inhibitory effect of NSC348884, a small molecular inhibitor of nucleophosmin, on the growth of hepatocellular carcinoma cell line hepG2]. [Article in Chinese]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2012, 34(1), 58-61.
[101]
Lacombe, K.; Rockstroh, J. HIV and viral hepatitis coinfections: advances and challenges. Gut, 2012, 61(Suppl. 1), i47-i58.
[102]
Maponga, T.G.; Matteau Matsha, R.; Morin, S.; Scheibe, A.; Swan, T.; Andrieux-Meyer, I.; Spearman, C.W.; Klein, M.B.; Rockstroh, J.K. Highlights from the 3rd international HIV/viral hepatitis Co-infection meeting - HIV/viral hepatitis: improving diagnosis, antiviral therapy and access. Hepatol. Med. Policy, 2017, 2, 8.
[103]
Stein, L.L.; Loomba, R. Drug targets in hepatitis B virus infection. Infect. Disord. Drug Targets, 2009, 9(2), 105-116.
[104]
Ma, S.; Boerner, J.E. TiongYip, C.; Weidmann, B.; Ryder, N.S.; Cooreman, M.P.; Lin, K. NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis C virus alone or in combination with alpha interferon. Antimicrob. Agents Chemother., 2006, 50(9), 2976-2982.
[105]
Jost, S.; Altfeld, M. Control of human viral infections by natural killer cells. Annu. Rev. Immunol., 2013, 31, 163-194.
[106]
de Poot, S.A.H.; Bovenschen, N. Granzyme M: behind enemy lines. Cell Death Differ., 2014, 21(3), 359-368.
[107]
Pao, L.I.; Sumaria, N.; Kelly, J.M.; van Dommelen, S.; Cretney, E.; Wallace, M.E.; Anthony, D.A.; Uldrich, A.P.; Godfrey, D.I.; Papadimitriou, J.M.; Mullbacher, A.; Degli-Esposti, M.A.; Smyth, M.J. Functional analysis of granzyme M and its role in immunity to infection. J. Immunol., 2005, 175(5), 3235-3243.
[108]
Cullen, S.P.; Afonina, I.S.; Donadini, R.; Lüthi, A.U.; Medema, J.P.; Bird, P.I.; Martin, S.J. Nucleophosmin is cleaved and inactivated by the cytotoxic granule protease granzyme M during natural killer cell-mediated killing. J. Biol. Chem., 2009, 284(8), 5137-5147.
[109]
Colombo, E.; Alcalay, M.; Pelicci, P.G. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene, 2011, 30(23), 2595-2609.
[110]
Di Matteo, A.; Franceschini, M.; Chiarella, S.; Rocchio, S.; Travaglini-Allocatelli, C.; Federici, L. Molecules that target nucleophosmin for cancer treatment: an update. Oncotarget, 2016, 7(28), 44821-44840.
[111]
Solares, A.M.; Santana, A.; Baladrón, I.; Valenzuela, C.; González, C.A.; Díaz, A.; Castillo, D.; Ramos, T.; Gómez, R.; Alonso, D.F.; Herrera, L.; Sigman, H.; Perea, S.E.; Acevedo, B.E.; López-Saura, P. Safety and preliminary efficacy data of a novel casein kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies. BMC Cancer, 2009, 9, 146.
[112]
Sarduy, M.R.; García, I.; Coca, M.A.; Perera, A.; Torres, L.A.; Valenzuela, C.M.; Baladrón, I.; Solares, M.; Reyes, V.; Hernández, I.; Perera, Y.; Martínez, Y.M.; Molina, L.; González, Y.M.; Ancízar, J.A.; Prats, A.; González, L.; Casacó, C.A.; Acevedo, B.E.; López-Saura, P.A.; Alonso, D.F.; Gómez, R.; Perea-Rodríguez, S.E. Optimizing CIGB-300 intralesional delivery in locally advanced cervical cancer. Br. J. Cancer, 2015, 112(10), 1636-1643.
[113]
Perera, Y.; Farina, H.G.; Hernández, I.; Mendoza, O.; Serrano, J.M.; Reyes, O.; Gómez, D.E.; Gómez, R.E.; Acevedo, B.E.; Alonso, D.F.; Perea, S.E. Systemic administration of a peptide that impairs the protein kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int. J. Cancer, 2008, 122(1), 57-62.
[114]
Destouches, D.; Page, N.; Hamma-Kourbali, Y.; Machi, V.; Chaloin, O.; Frechault, S.; Birmpas, C.; Katsoris, P.; Beyrath, J.; Albanese, P.; Maurer, M.; Carpentier, G.; Strub, J.M.; Van Dorsselaer, A.; Muller, S.; Bagnard, D.; Briand, J.P.; Courty, J. A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins. Cancer Res., 2011, 71(9), 3296-3305.
[115]
Chan, H.J.; Weng, J.J.; Yung, B.Y. Nucleophosmin/B23-binding peptide inhibits tumor growth and up-regulates transcriptional activity of p53. Biochem. Biophys. Res. Commun., 2005, 333(2), 396-403.
[116]
Jian, Y.; Gao, Z.; Sun, J.; Shen, Q.; Feng, F.; Jing, Y.; Yang, C. RNA aptamers interfering with nucleophosmin oligomerization induce apoptosis of cancer cells. Oncogene, 2009, 28(47), 4201-4211.
[117]
Wulff, J.E.; Siegrist, R.; Myers, A.G. The natural product avrainvillamide binds to the oncoprotein nucleophosmin. J. Am. Chem. Soc., 2007, 129(46), 14444-14451.
[118]
Mukherjee, H.; Chan, K.P.; Andresen, V.; Hanley, M.L.; Gjertsen, B.T.; Myers, A.G. Interactions of the natural product (+)-avrainvillamide with nucleophosmin and exportin-1 Mediate the cellular localization of nucleophosmin and its AML-associated mutants. ACS Chem. Biol., 2015, 10(3), 855-863.
[119]
Destouches, D.; Huet, E.; Sader, M.; Frechault, S.; Carpentier, G.; Ayoul, F.; Briand, J.P.; Menashi, S.; Courty, J. Multivalent pseudopeptides targeting cell surface nucleoproteins inhibit cancer cell invasion through tissue inhibitor of metalloproteinases 3 (TIMP-3) release. J. Biol. Chem., 2012, 287(52), 43685-43693.
[120]
Sekhar, K.R.; Reddy, Y.T.; Reddy, P.N.; Crooks, P.A.; Venkateswaran, A.; McDonald, W.H.; Geng, L.; Sasi, S.; Van Der Waal, R.P.; Roti, J.L.; Salleng, K.J.; Rachakonda, G.; Freeman, M.L. The novel chemical entity YTR107 inhibits recruitment of nucleophosmin to sites of DNA damage, suppressing repair of DNA double-strand breaks and enhancing radiosensitization. Clin. Cancer Res., 2011, 17(20), 6490-6499.
[121]
Sekhar, K.R.; Benamar, M.; Venkateswaran, A.; Sasi, S.; Penthala, N.R.; Crooks, P.A.; Hann, S.R.; Geng, L.; Balusu, R.; Abbas, T.; Freeman, M.L. Targeting nucleophosmin 1 represents a rational strategy for radiation sensitization. Int. J. Radiat. Oncol. Biol. Phys., 2014, 89(5), 1106-1114.